GHz Spectrum Acquisition in Realtime

Haitham Hassanieh

Lixin Shi, Omid Abari, Ezz Hamed and Dina Katabi

Spectrum Crisis

- The FCC: spectrum crunch started in 2013
- But at any time, most of the spectrum is unused

Dynamic Spectrum Access Sense to find unused bands; Use them! How do you capture GHz of spectrum?

Realtime GHz Spectrum Sensing is Difficult

- Today, sequential scanning of tens of MHz
 - → Can easily miss radar signals
- Key Challenge: high-speed ADCs

Tens of MHz ADC

Low-power
High resolution
Cheap

A Few GHz ADC

10x more power Poor resolution Expensive

Idea: Leverage Sparsity

Sparse recovery show that one can acquire sparse signals using sub-Nyquist sampling

Compressive Sensing however is difficult

- Random sampling

 Can't use low-speed ADCs
 - Compute million-point FFT → High power

Idea: Leverage Sparsity

Sparse FFT

No random sampling → Use a few low-speed ADCs Sub-linear algorithm → Computes large FFT cheaply

1- Bucketize

Divide spectrum into a few buckets

→ Can ignore empty bucket

2- Estimate

Estimate the large coefficients in each non-empty bucket

value of bucket = $\sum \hat{\mathbf{x}}_f$

Bucketize Estimate

Sub-sampling time - Aliasing the frequencies

Bucketize multiple time using co-prime sub-sampling

Same frequencies don't collide in two bucketizations

Identify isolated freq. in one bucketization and subtract them from the other; and iterate ...

Estimate

Repeat bucketization after shifting the signal in time by a time shift au

Time-Domain

x(t)

Freq-Domain

$$x(t-\tau)$$

$$X(f)e^{-j\theta}$$

Phase Rotation :
$$\theta = \frac{2\pi f \tau}{N} \rightarrow f = \frac{N\theta}{2\pi\tau}$$

BigBand: GHz Receiver for Sparse Signals

- Sub-sample the data

 Can use low-speed ADCs
- Very fast algorithm

 Lower-power consumption

- Used sparse FFT to build a GHz receiver from three tens of MHz ADCs
- Both senses and decodes the spectrum

Realtime GHz Spectrum Sensing

Cambridge, MA January 15 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)

Realtime GHz Spectrum Sensing

Cambridge, MA January 15 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)

3 ADCs with a combined digital Bandwidth of 150 MHz can acquire a GHz

Decoding Senders Randomly Hopping in a GHz

Number Transmitters

Decoding Senders Randomly Hopping in a GHz

SFFT enables realtime GHz sensing and decoding for low-power portable devices

But, what if the spectrum is not sparse?!

Differential BigBand

- Even if the spectrum is 100% occupied, changes in occupancy are sparse
 - → Apply sFFT to Changes/Diffs
- Can't subtract signals; operate over power
- Realtime GHz sensing; but no decoding

Conclusion

 BigBand provides GHz-wide realtime spectrum sensing and decoding using sFFT

 Differential-BigBand provides GHz sensing using sFFT

 Imagine multi-GHz of unlicensed open spectrum operating with carrier sense (a la WiFi)