Wireless Communications
From 5G and WiFi 6 to Low Power IoT

Lecture 6: 5G & WiFi 6
Haitham Hassanieh
Previous Lecture:

- IoT Intro.
- Spread Spectrum
- Low Power Wide Area Networks
- Backscatter Communication
- Bluetooth

This Lecture:

- WiFi Overview
- MIMO & Multi-User MIMO
- OFDMA
- 5G Overview
- Millimeter Wave
- Massive MIMO
WiFi Standards from WiFi 1 to WiFi 6

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
</tbody>
</table>
WiFi Standards from WiFi 1 to WiFi 6

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK,</td>
<td>2.4 Ghz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
</tbody>
</table>
WiFi Standards from WiFi 1 to WiFi 6

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK,</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
</tbody>
</table>
WiFi Standards from WiFi 1 to WiFi 6

Table of Standards

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK, DBPSK, DQPSK,</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
<tr>
<td>WiFi 4 (802.11n)</td>
<td>2009</td>
<td>OFDM (N=64) MIMO (4x4)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>600 Mb/s</td>
</tr>
</tbody>
</table>

Diagram

- **Channel 3**: 2422 MHz
- **Channel 11**: 2462 MHz

- Channel Center Frequency (GHz): 2.484 GHz
- Bandwidth: 22 MHz

Note: The diagram and table provide a comprehensive overview of the evolution of WiFi standards from 1999 to 2009, highlighting the technological advancements and their impact on data rates.
WiFi Standards from WiFi 1 to WiFi 6

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK,</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
<tr>
<td>WiFi 4 (802.11n)</td>
<td>2009</td>
<td>OFDM (N=64) MIMO (4x4)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz 5 GHz</td>
<td>20 MHz 40 MHz</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>Version</td>
<td>Year</td>
<td>Technology</td>
<td>Modulation</td>
<td>Freq.</td>
<td>Bandwidth</td>
<td>Maximum Data Rate</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK,</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
<tr>
<td>WiFi 4 (802.11n)</td>
<td>2009</td>
<td>OFDM (N=64) MIMO (4x4)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz 40 MHz</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>WiFi 5 (802.11ac)</td>
<td>2014</td>
<td>OFDM (N=64, 128, 256, 512) MIMO (8x8) MU-MIMO (Downlink)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM 256-QAM</td>
<td>5 GHz 20 MHz 40 MHz 80 MHz 160 MHz</td>
<td>6.933 Gb/s</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Year</td>
<td>Technology</td>
<td>Modulation</td>
<td>Freq.</td>
<td>Bandwidth</td>
<td>Maximum Data Rate</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------------------</td>
<td>--</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK, 256-QAM, 512-QAM</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
<tr>
<td>WiFi 4 (802.11n)</td>
<td>2009</td>
<td>OFDM (N=64) MIMO (4x4)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>WiFi 5 (802.11ac)</td>
<td>2014</td>
<td>OFDM (N=64, 128, 256, 512) MIMO (8x8) MU-MIMO (Downlink)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM</td>
<td>5 GHz</td>
<td>20 MHz 80 MHz 160 MHz</td>
<td>6.933 Gb/s</td>
</tr>
<tr>
<td>WiFi 6 (802.11ax)</td>
<td>2019</td>
<td>OFDM (N=256, 512, 1024, 2048) MIMO (8x8) MU-MIMO (Up & Down) OFDMA</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024-QAM</td>
<td>2.4 GHz 5 GHz</td>
<td>20 MHz 40 MHz 80 MHz 160 MHz</td>
<td>9.608 Gb/s</td>
</tr>
</tbody>
</table>
WiFi Standards from WiFi 1 to WiFi 6

<table>
<thead>
<tr>
<th>Version</th>
<th>Year</th>
<th>Technology</th>
<th>Modulation</th>
<th>Freq.</th>
<th>Bandwidth</th>
<th>Maximum Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiFi 1 (802.11b)</td>
<td>1999</td>
<td>DSSS</td>
<td>DBPSK, DQPSK,</td>
<td>2.4 GHz</td>
<td>22 MHz</td>
<td>11 Mb/s</td>
</tr>
<tr>
<td>WiFi 3 (802.11g)</td>
<td>2003</td>
<td>OFDM (N=64)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>20 MHz</td>
<td>54 Mb/s</td>
</tr>
<tr>
<td>WiFi 4 (802.11n)</td>
<td>2009</td>
<td>OFDM (N=64) MIMO (4x4)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM</td>
<td>2.4 GHz</td>
<td>5 GHz</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>WiFi 5 (802.11ac)</td>
<td>2014</td>
<td>OFDM (N=64, 128, 256, 512) MIMO (8x8) MU-MIMO (Downlink)</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM 256-QAM</td>
<td>5 GHz</td>
<td>20 MHz 40 MHz 80 MHz 160 MHz</td>
<td>6.933 Gb/s</td>
</tr>
<tr>
<td>WiFi 6 (802.11ax)</td>
<td>2020</td>
<td>OFDM (N=256, 512, 1024, 2048) MIMO (8x8) MU-MIMO (Up & Down) OFDMA</td>
<td>BPSK, QPSK, 16-QAM, 64-QAM 256-QAM, 1024-QAM</td>
<td>2.4 GHz 5 GHz 6 GHz</td>
<td>20 MHz 40 MHz 80 MHz 160 MHz</td>
<td>9.608 Gb/s</td>
</tr>
</tbody>
</table>
WiFi Standards from WiFi 1 to WiFi 6

- **2.4 GHz**
 - Bands: 1, 3
 - Channels: 7, 20
 - BW: 20 MHz
 - 3 Channels Allocated

- **5 GHz**
 - Bands: 25, 12, 6, 2
 - Channels: 20 MHz, 40 MHz, 80 MHz, 160 MHz
 - 25 Channels Allocated

- **6 GHz**
 - Bands: 59, 29, 14, 7
 - Channels: 20 MHz, 40 MHz, 80 MHz, 160 MHz
 - 59 Channels Available

More Channels & Bandwidth

More MIMO Antennas

WiFi 1 -> WiFi 5/6
MIMO: Multiple Input Multiple Output

So far: single input single output

MIMO: multiple input multiple output

Increase capacity of channel using multiple transmit and receive antennas.
So far: single input single output

MIMO: multiple input multiple output

Increase capacity of channel using multiple transmit and receive antennas.
MIMO: Multiple TX-RX streams

\[y_1(t) = h_{11} x_1 + h_{12} x_2 \]
\[y_2(t) = h_{21} x_1 + h_{22} x_2 \]

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}
= \begin{bmatrix}
 h_{11} & h_{12} \\
 h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\]

\[y = Hx \]

How to recover \(x_1 \) and \(x_2 \)?

Estimate \(H \), compute \(H^{-1} \) and invert the channel!

\[\tilde{x} = H^{-1}y = H^{-1}Hx = x \]

Transmit 2x at the same time!
MIMO: Multiple TX-RX streams

WiFi Access Points 2 to 8 MIMO

WiFi Devices 1 to 2 MIMO

• Power
• Form Factor & Antenna Separation
• Most mobile phones support 2 MIMO
Multi-User MIMO

\[y_1 = h_{11}x_1 + h_{12}x_2 \]

\[y_2 = h_{21}x_1 + h_{22}x_2 \]

\[y = Hx \]

\[\tilde{x} = H^{-1}y = H^{-1}Hx = x \]

Does not work! Receivers do not have access to each other’s signals.
MU-MIMO Beamforming

\[y_1 = h_{11}x_1 + h_{12}x_2 \]
\[y_2 = h_{21}x_1 + h_{22}x_2 \]

Send: \(\tilde{x} = H^{-1}x \)

Receive: \(y = H\tilde{x} = HH^{-1}x = x \)

Allows 1 AP to communicate with multiple users at the same time!

- Requires feedback from the receiver to know the channel at the transmitter.
- Introduces in 802.11ac but not widely used until 802.11ax
Channel Access in WiFi 1 – 5: CSMA

• CSMA: Carrier Sense Multiple Access
• Medium Access scheme in WiFi & Ethernet
• Simplified Version:
 1. Listen on the channel
 2. If no one is transmitting → back-off & wait for \(M \) slots
 3. If after \(M \) slots, still no one is transmitting, transmit.
 4. If collision, increase back-off time: \(M = 2 \times M \)
 If successful, decrease back-off window: \(M = 2 \)

Suffers from significant number of collisions & problems known as hidden terminals & exposed terminals.
WiFi 6: OFDMA

• OFDMA: Orthogonal Frequency Division Multiple Access
• Assign different OFDM subcarriers to difference users.
• Since subcarriers are orthogonal → small guard bands (Efficient).

Transmit and Receive from multiple users at the same time.

Requires users to be synchronized on the uplink! Needs good hardware & synchronization algorithms.
WiFi 6: OFDMA

802.11ac vs. 802.11ax: Fixed Overhead vs. Efficient Payload Delivery

OFDM vs. OFDMA:
- OFDM: Uses multiple subcarriers to transmit data simultaneously.
- OFDMA: Allocates dedicated resources to each user, reducing overhead.

Subcarriers:
- OFDM: wider channel width
- OFDMA: multiple resource units

Users:
- User 0 (Web Page)
- User 1 (Streaming)
- User 2 (WeChat/Instagram)

Source: Qorvo, Inc. ©2017 Qorvo, Inc.
WiFi 6: OFDMA

OFDM Symbol with 1024 Subcarriers in 802.11ax

1 User with 996 subcarriers

2 Users with 484 subcarriers each

4 Users with 242 subcarriers each

8 Users with 104 subcarriers each

16 Users with 52 subcarriers each

37 Users with 26 subcarriers each
Previous Lecture:
- IoT Intro.
- Spread Spectrum
- Low Power Wide Area Networks
- Backscatter Communication
- Bluetooth

This Lecture:
- WiFi Overview
- MIMO & Multi-User MIMO
- OFDMA
- 5G Overview
- Millimeter Wave
- Massive MIMO
Mobile Technologies from 1G to 5G

<table>
<thead>
<tr>
<th>Generation</th>
<th>Device</th>
<th>Specifications</th>
</tr>
</thead>
</table>
| **1G** | ![Image](https://via.placeholder.com/150) | **Year:** 1980s
Standards: AMPS, TACS
Technology: Analog
Bandwidth: –
Data rates: – |
| **2G** | ![Image](https://via.placeholder.com/150) | **Year:** 1997
Standards: GSM, GPRS, EDGE
Technology: Digital
Bandwidth: Narrow Band
Data rates: < 80 - 130 Kbit/s |
| **3G** | ![Image](https://via.placeholder.com/150) | **Year:** 2001
Standards: UMTS / WCDMA
Technology: Digital
Bandwidth: Broad Band
Data rates: up to 2 MHz/s |
| **4G** | ![Image](https://via.placeholder.com/150) | **Year:** 2010
Standards: LTE, LTE Advanced
Technology: Digital
Bandwidth: Mobile Broad Band
Data rates: >5G, like experience
1 hr HD movie in 6 minutes |
| **5G** | ![Image](https://via.placeholder.com/150) | **Year:** 2020-2030
Technology: Digital
Bandwidth: Ubiquitous connectivity
Data rates: Fiber-like experience
1 hr HD movie in 6 seconds |

5G is about Communication, Storage, Processing…

- **People**
 - **Connected house**
 - **Entertainment**
 - Apps beyond imagination
 - **Smart Car**
 - Car-to-car communication
 - **eHealth**
 - Traffic priority
 - **Internet of Things**
 - Smart grids

People & Things

- **Smart grids**
 - Data rates / applications

European Commission
5G: Unified Air Interface

Enhanced Mobile Broadband (eMBB)
- 100+ Mbps avg. throughput
- 10+ Gbps peak throughput

Massive Machine Type Communications (mMTC)
- 10^6/km2 connection density
- Low cost/energy connectivity

Ultra-Reliable, Low-Latency Communications (URLLC)
- 99.999% service availability
- 1 – 10 ms latency

Applications:
- Mobile video and gaming
- Cloud computing and storage
- High speed connectivity

- Billions of connected devices
- Sensor networks
- IoT / M2M / D2D

- Tactile Internet
- Natural disaster relief
- E-Medicine and Health care
5G: Underlying Technology

5G Radio Standard: NR (New Radio)

- Millimeter Wave
- Massive MIMO
- Small Cells (Extended from 4G)
- LDPC & Polar Codes
- Full Duplex
- F-OFDM
5G: Underlying Technology

5G Radio Standard: NR (New Radio)

- Millimeter Wave
- Massive MIMO
- Small Cells (Extended from 4G)
- LDPC & Polar Codes
- Full Duplex
- F-OFDM
Millimeter Wave Technology

Huge bandwidth available at millimeter wave frequencies

Currently we operate here

> 14 GHz of Unlicensed Spectrum
For WiFi 802.11ad
Millimeter Waves Suffer from Large Attenuation

\[\text{O}_2 \text{ Absorption at 60GHz} \]
Small Wavelength enables thousands of antennas to be packed into small space

→ Extremely narrow beams

Millimeter Waves Suffer from Large Attenuation

mmWave radios use phased antenna arrays to focus the power along one direction
Antenna Arrays

\[
d_1 = d_0 - s \cos \theta
\]

\[
h_0 = \alpha e^{-j2\pi \frac{d_0}{\lambda}} = \alpha e^{-j\phi_0}
\]

\[
h_1 = \alpha e^{-j2\pi \frac{d_1}{\lambda}} = \alpha e^{-j2\pi \frac{d_0 - s \cos \theta}{\lambda}}
\]

\[
h_k = \alpha e^{-j2\pi \frac{d_k}{\lambda}} = \alpha e^{-j2\pi \frac{d_0 - ks \cos \theta}{\lambda}}
\]

\[
s = \frac{\lambda}{2}
\]
\[d_1 = d_0 - s \cos \theta \]

\[h_0 = \alpha e^{-j2\pi \frac{d_0}{\lambda}} = \alpha e^{-j\phi_0} \]

\[h_1 = \alpha e^{-j2\pi \frac{d_1}{\lambda}} = \alpha e^{-j2\pi \frac{d_0 - s \cos \theta}{\lambda}} = \alpha e^{-j\phi_0 + j\pi \cos \theta} \]

\[h_k = \alpha e^{-j2\pi \frac{d_k}{\lambda}} = \alpha e^{-j2\pi \frac{d_0 - ks \cos \theta}{\lambda}} = \alpha e^{-j\phi_0 + j\pi k \cos \theta} \]
Antenna Arrays

\[d_1 = d_0 - s \cos \theta \]

\[y_k(t) = h_k x(t) \]

To receive from direction \(\theta \):

\[y_\theta(t) = \sum y_k(t) e^{-j\pi k \cos \theta} \]

\[h_k = \alpha e^{-j\phi_0 + j\pi k \cos \theta} \]
$d_1 = d_0 - s \cos \theta$

$y_k(t) = h_k x(t)$

$h_k = \alpha e^{-j\phi_0 + j\pi k \cos \theta}$

To receive from direction θ:

$y_\theta(t) = \sum y_k(t) e^{-j\pi k \cos \theta} = \sum h_k x(t) e^{-j\pi k \cos \theta}$

$= \sum x(t) e^{-j\phi_0} = N x(t) e^{-j\phi_0}$

Increased Transmit/Receiver power along θ by N times.
Antenna Arrays

\[d_1 = d_0 - s \cos \theta \]

\[s = \frac{\lambda}{2} \]

Increased Transmit/Receiver power along \(\theta \) by N times.

To receive from direction \(\theta \):
\[
y_\theta(t) = \sum y_k(t) e^{-j\pi k \cos \theta}
\]

To transmit along direction \(\theta \):
\[
x_k(t) = x(t) e^{-j\pi k \cos \theta}
\]
Millimeter Wave Phased Arrays

- Small Wavelength at mmWave enables massive antenna arrays to be packed into small space
 - e.g. At 60 GHz, 1024 (32×32 ≈ 8cm×8cm)
 - Huge antenna gains
 - Very Narrow beams
 - Electronic Steering
Beamforming using Antenna Arrays

To receive from direction θ:

$$ y_\theta(t) = \sum y_k(t) e^{-j\pi k \cos \theta} $$

Cannot have a TX/RX chain per antenna!

Cannot do digital beamforming
Beamforming using Antenna Arrays

To receive from direction θ:

$$y_\theta(t) = \sum y_k(t)e^{-j\pi k \cos \theta}$$

Digital Beamforming

Analog Beamforming

Phase-Shifters
Millimeter Wave Uses Phased Arrays
Early Measurement of Millimeter Wave 5G Deployments

https://fivegophers.umn.edu/www20/

Figure 1: 5G coverage recorded at Minneapolis’s Commons Park. A color gradient from green to black indicates the percentage of observed 5G coverage (high to low respectively). We sampled 6.8 million data points to inform this visualization. Also indicated is a 5G mmWave base station.

Figure 5: TCP performance under LoS: throughput.

Figure 6: TCP performance under LoS: RTT.
Previous Lecture:

- IoT Intro.
- Spread Spectrum
- Low Power Wide Area Networks
- Backscatter Communication
- Bluetooth

This Lecture:

- WiFi Overview
- MIMO & Multi-User MIMO
- OFDMA
- 5G Overview
- Millimeter Wave

- Massive MIMO
Multi-User MIMO at < 6 GHz
More Antennas Multi-User MIMO at < 6 GHz
More More Antennas Multi-User MIMO at < 6 GHz
More More More Antennas Multi-User MIMO at < 6 GHz
Argos: World’s first Massive MIMO Testbed (2011)
Differences between Massive MIMO & Millimeter Wave

A. mmWave operates > 24GHz vs. Massive MIMO < 6 GHz

B. mmWave supports higher bandwidth → higher data rates

C. Massive MIMO has 1 TX/RX per antenna whereas mmWave has 1 TX/RX for all antennas

D. Massive MIMO can transmit/receive to multiple users at the same time where mmWave (no MIMO) can transmit/receiver from only 1 user at a time.
Opinion of this Class

A. I really enjoyed this class and learned a lot.

B. I only enjoyed the last part but not the first part.

C. I learned new stuff but did not enjoy the class.

D. This class is not at all what I expected. I did not like it.
In this Class

1. Components of Wireless Transmitter & Receiver
2. Modulation
3. Wireless Channel
4. OFDM
5. IoT
6. WiFi
7. 5G Cellular Networks