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The Dicrete Fourier Transform

Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij

x̂ = Fx for Fij = ωij

Fundamental tool
I Compression (audio, image, video)
I Signal processing
I Data analysis
I ...

FFT: O(n log n) time.
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Sparse Fourier Transform

Often the Fourier transform is dominated by a small number of
“peaks”

I Precisely the reason to use for compression.

If most of mass in k locations, can we compute FFT faster?
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Sparse Fourier Transform

Time Frequency Frequency

If at most k non-zero coefficients, then “exactly k -sparse.”
More often well approximated by k largest coefficients:
“approximately k -sparse.”
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Previous work

Boolean cube: [KM92], [GL89]. Cn: [Mansour92] kc logc n.
Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log4 n.

I All have poor constants, many logs.
I Need n/k > 40,000 or ω(log3 n) to beat FFTW.
I Our goal: faster, beat FFTW for smaller n/k in theory and practice.
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Our results

O(k log(n/k) log n) time.
O(k log n) for special case: exactly k -sparse.
Faster than FFT when n/k = ω(1).
Lower bounds:

I Ω(k log k) for special case assuming FFT is optimal.
I For general case, Ω(k log(n/k)/ log log(n/k)) samples even with

adaptive sampling.
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Our results

Compute the k -sparse Fourier transform in O(k log(n/k) log n)
time.

Get x̂ ′ with approximation error

‖x̂ ′ − x̂‖22 ≤ 2 min
k -sparse x̂k

‖x̂ − x̂k‖22

with 3/4 probability.
If x̂ is sparse, recover it exactly.

I In O(k log n) time.

Caveats:
I Additional ‖x‖2

2/n
Θ(1) error. Alternatively, x̂ has poly(n) precision.

I n must be a power of 2.
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Algorithm

Suppose x̂ is k -sparse, with integer coefficients in {−nΘ(1), . . . ,nΘ(1)}.

Theorem
We can recover x̂ in O(k log n) time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover x̂ ′ in O(k log n) time with 3/4 probability such that
x̂ − x̂ ′ is k/2-sparse.

Then: repeat on x̂ − x̂ ′, with k → k/2 and decreasing the error
probability. [Eppstein-Goodrich ’07]

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11 / 33



Algorithm

Suppose x̂ is k -sparse, with integer coefficients in {−nΘ(1), . . . ,nΘ(1)}.

Theorem
We can recover x̂ in O(k log n) time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover x̂ ′ in O(k log n) time with 3/4 probability such that
x̂ − x̂ ′ is k/2-sparse.

Then: repeat on x̂ − x̂ ′, with k → k/2 and decreasing the error
probability. [Eppstein-Goodrich ’07]

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11 / 33



Algorithm

Suppose x̂ is k -sparse, with integer coefficients in {−nΘ(1), . . . ,nΘ(1)}.

Theorem
We can recover x̂ in O(k log n) time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover x̂ ′ in O(k log n) time with 3/4 probability such that
x̂ − x̂ ′ is k/2-sparse.

Then: repeat on x̂ − x̂ ′, with k → k/2 and decreasing the error
probability. [Eppstein-Goodrich ’07]

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11 / 33



Inspiration: arbitrary linear measurements
Eppstein-Goodrich ’07

Get linear measurements xi = F−1
i x̂ of x̂

What if we could choose arbitrary linear measurements?
Pairwise independent hash: h : [n]→ [B] for B = Θ(k).

n coordinates

B bins

For j ∈ [B], observe

uj =
∑

h(i)=j

x̂i u′j =
∑

h(i)=j

i · x̂i

For each j , set i∗ = u′j/uj and x̂ ′i∗ = uj .
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Inspiration: arbitrary linear measurements

For j ∈ [B], observe

uj =
∑

h(i)=j

x̂i u′j =
∑

h(i)=j

i · x̂i

For each j , set i∗ = u′j/uj and x̂ ′i∗ = uj .

Gives weak sparse recovery:

I If i alone in bucket h(i), recovered correctly.
I Hence i recovered correctly with 1− k/B ≥ 15/16 probability.
I If i recovered incorrectly, can add one spurious coordinate.
I With 3/4 probability, less than k/4 such mistakes.
I Hence x̂ − x̂ ′ is k/2-sparse.

Goal: construct u, u′ from Fourier samples.

I Will be able to do this in O(B log n) time.
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What can you do with Fourier measurements?
Time Frequency
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n-dimensional DFT:
O(n log n)

n-dimensional DFT of first
B terms: O(n log n)

B-dimensional DFT of
first B terms: O(B log B)



What can you do with Fourier measurements?
Time Frequency

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14 / 33

n-dimensional DFT:
O(n log n)

n-dimensional DFT of first
B terms: O(n log n)

B-dimensional DFT of
first B terms: O(B log B)



What can you do with Fourier measurements?
Time Frequency

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14 / 33

n-dimensional DFT:
O(n log n)

n-dimensional DFT of first
B terms: O(n log n)

B-dimensional DFT of
first B terms: O(B log B)



What can you do with Fourier measurements?
Time Frequency

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14 / 33

n-dimensional DFT:
O(n log n)

n-dimensional DFT of first
B terms: O(n log n)

B-dimensional DFT of
first B terms: O(B log B)



What can you do with Fourier measurements?
Time Frequency

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14 / 33

n-dimensional DFT:
O(n log n)

n-dimensional DFT of first
B terms: O(n log n)

B-dimensional DFT of
first B terms: O(B log B)



Framework

“Hashes” into B buckets in B log B time.
Analogous to uj =

∑
h(i)=j x̂i .

Issues:
I “Hashing” needs a random hash function

F Access x ′t = ω−btxat , so x̂ ′at+b = x̂t [GMS05]

I Leakage
I Want analog of u′j =

∑
h(i)=j i · x̂i .

F Time shift x ′t = xt−1: get phase shift x̂ ′ i = ωi x̂i .
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Leakage

Let Fi =

{
1 i < B
0 otherwise

be the “boxcar” filter. (Used in

[GGIMS02,GMS05])
Observe

DFT(F ·x ,B)

= subsample(DFT(F ·x ,n),B)

= subsample(F̂∗x̂ ,B).

DFT F̂ of boxcar filter is sinc, decays as 1/i .
Need a better filter F !
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Filters
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2.0 Filter (time)

Bin
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20

25 Filter (freq)

Given |supp(F )| = B, concentrate F̂ .

Boxcar filter: decays perfectly in time, 1/t in frequency.
I Non-trivial leakage everywhere.

Gaussians: decay as e−t2
in time and frequency.

I Non-trivial leakage to O(
√

log n ·
√

log n) = O(log n) buckets.

Still O(B log n) time when |supp(F̂ )| = B log n.
I Non-trivial leakage to 0 buckets.

I Trivial contribution to correct bucket.
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Let G be Gaussian with σ = B
√

log n
H be box-car filter of length n/B.

Use F̂ = Ĝ ∗ H.
Hashes correctly to one bucket, leaks to at most 1 bucket.
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Properties of filter
Filter (frequency): Gaussian * boxcar

“Pass region” of size n/B, outside which is negligible δ.
“Super-pass region”, where ≈ 1.
Small fraction (say 10%) is “bad region” with intermediate value.
Time domain has support size O(B log n).
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Properties of filter
Bad region

“Pass region” of size n/B, outside which is negligible δ.
“Super-pass region”, where ≈ 1.
Small fraction (say 10%) is “bad region” with intermediate value.

Time domain has support size O(B log n).
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Properties of filter
Filter (time): Gaussian · sinc

“Pass region” of size n/B, outside which is negligible δ.
“Super-pass region”, where ≈ 1.
Small fraction (say 10%) is “bad region” with intermediate value.
Time domain has support size O(B log n).
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Algorithm for exactly sparse signals

Original signal x Original signal x̂

Lemma
If i is alone in its bucket and in the “super-pass” region,

uh(i) = x̂i .

Computing u takes O(B log n) time.
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Algorithm for exactly sparse signals

F ·x aliased to B terms Computed samples of F̂ ∗x̂

Lemma
If i is alone in its bucket and in the “super-pass” region,

uh(i) = x̂i .

Computing u takes O(B log n) time.
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Algorithm for exactly sparse signals

F ·x aliased to B terms Knowledge about x̂

Lemma
If i is alone in its bucket and in the “super-pass” region,

uh(i) = x̂i .

Computing u takes O(B log n) time.
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Algorithm for perfectly sparse signals

Lemma
If i is alone in its bucket and in the “super-pass” region,

uh(i) = x̂i .

Time-shift x by one and repeat: u′h(i) = x̂iω
i .

Divide to find i .
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Permutation in time and frequency

Can recover coordinates that are alone in their bucket and in the
super-pass region.
What if coordinates are near each other?

Define the “permutation”

(Pa,bx)i = xaiω
−ib.

Then
̂(Pa,bx)ai+b = x̂i .

For random a and b, each i is probably “well-hashed.”
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Overall algorithm

Weak sparse recovery:
I Permute with random a,b.
I Hash to u
I Time shift by one, hash to u′.
I For j ∈ [B]

F Choose i∗ by u′j /uj = ωi∗ .
F Set x̂ ′ i∗ = uj .

Full sparse recovery:
I x̂ ′ ← WeakRecovery(x , k)
I k → k/2, x → (x − x ′), repeat.

Time dominated by hash to Br = k/2r buckets in round r :
I Br log n to hash x .
I Hashing x̂ ′ takes O(|supp(x̂ ′)|) = O(k).

Time
∑

( k
2r log n + k) = O(k log n).
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Outline

1 Introduction

2 Special case: exactly sparse signals

3 General case: approximately sparse signals

4 Experiments
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Nearly sparse signals

What happens if only 90% of the mass lies in top k coordinates,
not 100%?
Want to find most “heavy” coordinates i with |x̂i |2 > ‖xtail‖22/k .

Lemma
Each i is “well-hashed” with large constant probability over the
permutation (a,b). If i is well-hashed, then with time shift c we have

uh(i) = x̂iω
ci + η

so that for random c, the noise η is bounded by

E[|η|2] . ‖xtail‖22/B
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Recovering well-hashed i

ωci x̂i

With good probability over c, get uh(i) = x̂iω
cπ(i) + η with

|η| < |x̂i |/10.

Phase error |θ| ≤ sin−1( |η||x̂i |
) < 0.11.

True for random c. For a fixed γ, run on c and c + γ to observe

ωγπ(i)

to within 0.22.
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Recovering well-hashed i

observation

ωγi

Find i from n/k possibilities in bucket.
Choose any γ, then observe ωγi to within ±0.1 radians.
Constant number of bits, so hope for Θ(log(n/k)) observations.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 27 / 33



Recovering well-hashed i

ωi

We know i to within R.
Set γ = bn/Rc.
Restrict and repeat, log(n/k) times.
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Problem: constant failure probability per measurement

observation

ωγi

We only estimate ωγi well with 90% probability.
Some of the log(n/k) restrictions will go awry.

Two options:
I Median of O(log log(n/k)) estimates.

I Can avoid the loss: learn log log(n/k) bits at a time.
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General k -sparse algorithm

Shown how to find most heavy hitters.

Straightforward to estimate their value.

Gives “weak sparse recovery”: k -sparse x̂ ′ such that x̂ − x ′ is
k/2-sparse.

I With a little additional noise [Gilbert-Li-Porat-Strauss ’10]

Repeat on x̂ − x ′, with k → k/2.
Takes O((Bi log n + k) log(n/Bi)) time in round i , with Bi buckets.

I Previous recursion: Bi � ki � k/2i gives

k log n log k � n log n

I Instead: Bi � k/iΘ(1), ki � k/i! gives

k log n log(n/k)
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Empirical performance of exact sparse algorithm
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Compare to FFTW, previous best sublinear algorithm (AAFFT).
Faster than FFTW for k/n < 3%.
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Conclusions and Future Work

O(k log n) for exactly sparse x̂
O(k log n

k log n) for approximation.
Beats FFTW for k/n < 3% (in the exact case).
Open problems:

I Can we get k log n for approximate recovery?
I Hadamard matrix / FFT over finite fields?
I n not a power of 2?
I Higher probability of success without log(1/δ) slowdown?
I Stronger approximation guarantee, like `∞/`2?
I Better recovery of off-grid frequencies?
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SODA empirical Performance: runtime
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Compare to FFTW, previous best sublinear algorithm (AAFFT).

Offer a heuristic that improves time to Õ(n1/3k2/3).
I Filter from [Mansour ’92].
I Can’t rerandomize, might miss elements.

Faster than FFTW for n/k > 2,000.
Faster than AAFFT for n/k < 1,000,000.
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SODA empirical Performance: noise
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Just like in Count-Sketch, algorithm is noise tolerant.
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Saving a log log(n/k) factor

Could use only log(n/k) samples by taking random γ:
I For τ ′ 6= τ , ωγ(τ ′−τ) uniform over circle.
I Hence ωγτ

′
probably far from the observations.

I Distinguish among n/k possibilities with log(n/k) samples.

Takes n/k log(n/k) time to test all possibilities.
Idea: mix the two approaches.

I Split region into log(n/k) subregions of size w .
I Choose random γ ∈ [ n

8w ,
n

4w ].
I Small enough that subregions remain local.
I Large enough that far subregions roughly uniform.
I Identify subregion exhaustively: log log(n/k) measurements and

log(n/k) log log(n/k) time.
I Repeat loglog(n/k)(n/k) times to identify τ .
I Total log(n/k) measurements, log2(n/k) time.
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