Nearly Optimal Sparse Fourier Transform

Haitham Hassanieh Piotr Indyk Dina Katabi

MIT

2012-04-27

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

< 글> 글⊨ ∽<C 2012-04-27 1/33

Eric Price

Outline

Hassanieh, Indyk, Katabi, and Price (MIT)

4 2012-04-27 2/33

12

イロト イヨト イヨト イヨト

2 Special case: exactly sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 2/33

-

< A

2 Special case: exactly sparse signals

3 General case: approximately sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 2/33

2 Special case: exactly sparse signals

General case: approximately sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

2012-04-27 2/33

Outline

1 Introduction

2 Special case: exactly sparse signals

3 General case: approximately sparse signals

Experiments

Hassanieh, Indyk, Katabi, and Price (MIT)

A B A A B A

< 6 b

The Dicrete Fourier Transform

• Discrete Fourier transform: given $x \in \mathbb{C}^n$, find

$$\widehat{\mathbf{x}}_i = \sum \mathbf{x}_j \omega^{ij}$$

Nearly Optimal Sparse Fourier Transform

2012-04-27 4 / 33

The Dicrete Fourier Transform

• Discrete Fourier transform: given $x \in \mathbb{C}^n$, find

$$\widehat{x}_i = \sum x_j \omega^{ij}$$

$$\widehat{x} = Fx$$
 for $F_{ij} = \omega^{ij}$

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 4 / 33

The Dicrete Fourier Transform

• Discrete Fourier transform: given $x \in \mathbb{C}^n$, find

$$\widehat{x}_i = \sum x_j \omega^{ij}$$

$$\widehat{\pmb{x}}=\pmb{F}\pmb{x}$$
 for $\pmb{F}_{ij}=\omega^{ij}$

Hassanieh, Indyk, Katabi, and Price (MIT)

2012-04-27 4 / 33

Sparse Fourier Transform

- Often the Fourier transform is dominated by a small number of "peaks"
 - Precisely the reason to use for compression.
- If most of mass in k locations, can we compute FFT faster?

Sparse Fourier Transform

- If at most k non-zero coefficients, then "exactly k-sparse."
- More often well approximated by k largest coefficients: "approximately k-sparse."

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log⁴ n.

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log⁴ n.
 - All have poor constants, many logs.

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log⁴ n.
 - All have poor constants, many logs.
 - Need n/k > 40,000 or $\omega(\log^3 n)$ to beat FFTW.

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log⁴ n.
 - All have poor constants, many logs.
 - Need n/k > 40,000 or $\omega(\log^3 n)$ to beat FFTW.
 - Our goal: faster, beat FFTW for smaller n/k in theory and practice.

- $O(k \log(n/k) \log n)$ time.
- $O(k \log n)$ for special case: exactly k-sparse.
- Faster than FFT when $n/k = \omega(1)$.
- Lower bounds:
 - $\Omega(k \log k)$ for special case assuming FFT is optimal.
 - For general case, Ω(k log(n/k)/ log log(n/k)) samples even with adaptive sampling.

제 글 제 제 글 제 글 날

 Compute the k-sparse Fourier transform in O(k log(n/k) log n) time.

2012-04-27 9 / 33

- Compute the *k*-sparse Fourier transform in $O(k \log(n/k) \log n)$ time.
- Get $\hat{x'}$ with approximation error

$$\|\widehat{x'} - \widehat{x}\|_2^2 \le 2 \min_{k ext{-sparse } \widehat{x_k}} \|\widehat{x} - \widehat{x_k}\|_2^2$$

with 3/4 probability.

< 6 k

- Compute the *k*-sparse Fourier transform in $O(k \log(n/k) \log n)$ time.
- Get $\hat{x'}$ with approximation error

$$\|\widehat{x'} - \widehat{x}\|_2^2 \le 2 \min_{k ext{-sparse } \widehat{x_k}} \|\widehat{x} - \widehat{x_k}\|_2^2$$

with 3/4 probability.

• If \hat{x} is sparse, recover it exactly.

- Compute the *k*-sparse Fourier transform in $O(k \log(n/k) \log n)$ time.
- Get $\hat{x'}$ with approximation error

$$\|\widehat{x'} - \widehat{x}\|_2^2 \le 2 \min_{k ext{-sparse } \widehat{x_k}} \|\widehat{x} - \widehat{x_k}\|_2^2$$

with 3/4 probability.

- If \hat{x} is sparse, recover it exactly.
 - In O(k log n) time.

- Compute the k-sparse Fourier transform in O(k log(n/k) log n) time.
- Get $\hat{x'}$ with approximation error

$$\|\widehat{x'} - \widehat{x}\|_2^2 \le 2 \min_{k ext{-sparse } \widehat{x_k}} \|\widehat{x} - \widehat{x_k}\|_2^2$$

with 3/4 probability.

- If \hat{x} is sparse, recover it exactly.
 - In O(k log n) time.
- Caveats:
 - ► Additional $||x||_2^2/n^{\Theta(1)}$ error. Alternatively, \hat{x} has poly(*n*) precision.
 - n must be a power of 2.

Outline

1 Introduction

2 Special case: exactly sparse signals

3 General case: approximately sparse signals

4 Experiments

Hassanieh, Indyk, Katabi, and Price (MIT)

2012-04-27 10/33

-

Algorithm

Suppose \hat{x} is *k*-sparse, with integer coefficients in $\{-n^{\Theta(1)}, \ldots, n^{\Theta(1)}\}$.

Theorem

We can recover \hat{x} in $O(k \log n)$ time with 3/4 probability.

Algorithm

Suppose \hat{x} is *k*-sparse, with integer coefficients in $\{-n^{\Theta(1)}, \ldots, n^{\Theta(1)}\}$.

Theorem

We can recover \hat{x} in $O(k \log n)$ time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover \hat{x}' in $O(k \log n)$ time with 3/4 probability such that $\hat{x} - \hat{x}'$ is k/2-sparse.

Algorithm

Suppose \hat{x} is *k*-sparse, with integer coefficients in $\{-n^{\Theta(1)}, \ldots, n^{\Theta(1)}\}$.

Theorem

We can recover \hat{x} in $O(k \log n)$ time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover \hat{x}' in $O(k \log n)$ time with 3/4 probability such that $\hat{x} - \hat{x}'$ is k/2-sparse.

• Then: repeat on $\hat{x} - \hat{x'}$, with $k \to k/2$ and decreasing the error probability. [Eppstein-Goodrich '07]

イロト 不得 トイヨト イヨト 正言 ろくの

• Get linear measurements $x_i = F_i^{-1} \hat{x}$ of \hat{x}

《曰》《圖》《曰》《曰》 되는

- Get linear measurements $x_i = F_i^{-1} \hat{x}$ of \hat{x}
- What if we could choose arbitrary linear measurements?

(4) (5) (4) (5)

- Get linear measurements $x_i = F_i^{-1} \hat{x}$ of \hat{x}
- What if we could choose arbitrary linear measurements?
- Pairwise independent hash: $h: [n] \rightarrow [B]$ for $B = \Theta(k)$.

- Get linear measurements $x_i = F_i^{-1} \hat{x}$ of \hat{x}
- What if we could choose arbitrary linear measurements?
- Pairwise independent hash: $h: [n] \rightarrow [B]$ for $B = \Theta(k)$.

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

Hassanieh, Indyk, Katabi, and Price (MIT)

- Get linear measurements $x_i = F_i^{-1} \hat{x}$ of \hat{x}
- What if we could choose arbitrary linear measurements?
- Pairwise independent hash: $h: [n] \rightarrow [B]$ for $B = \Theta(k)$.

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_j$

• For each *j*, set $i^* = u'_i/u_j$ and $\hat{x'}_{i^*} = u_j$.

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

• For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

• For each *j*, set
$$i^* = u'_j/u_j$$
 and $\widehat{x'}_{i^*} = u_j$.

Gives weak sparse recovery:

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If i alone in bucket h(i), recovered correctly.

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.

김 권 동 김 권 동 - 권 문

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.
 - If i recovered incorrectly, can add one spurious coordinate.

김 권 동 김 권 동 - 권 문

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\widehat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.
 - If i recovered incorrectly, can add one spurious coordinate.
 - With 3/4 probability, less than k/4 such mistakes.
Inspiration: arbitrary linear measurements

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.
 - If i recovered incorrectly, can add one spurious coordinate.
 - With 3/4 probability, less than k/4 such mistakes.
 - Hence $\hat{x} \hat{x'}$ is k/2-sparse.

Inspiration: arbitrary linear measurements

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.
 - If i recovered incorrectly, can add one spurious coordinate.
 - With 3/4 probability, less than k/4 such mistakes.
 - Hence $\hat{x} \hat{x'}$ is k/2-sparse.
- Goal: construct *u*, *u*' from Fourier samples.

Inspiration: arbitrary linear measurements

• For $j \in [B]$, observe

$$u_j = \sum_{h(i)=j} \widehat{x}_i$$
 $u'_j = \sum_{h(i)=j} i \cdot \widehat{x}_i$

- For each *j*, set $i^* = u'_j/u_j$ and $\hat{x'}_{i^*} = u_j$.
- Gives weak sparse recovery:
 - If *i* alone in bucket h(i), recovered correctly.
 - Hence *i* recovered correctly with $1 k/B \ge 15/16$ probability.
 - If i recovered incorrectly, can add one spurious coordinate.
 - With 3/4 probability, less than k/4 such mistakes.
 - Hence $\hat{x} \hat{x'}$ is k/2-sparse.
- Goal: construct *u*, *u*' from Fourier samples.
 - Will be able to do this in $O(B \log n)$ time.

n-dimensional DFT: $O(n \log n)$

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27

14/33

고나님

n-dimensional DFT: $O(n \log n)$

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27

고나님

14/33

2012-04-27 14/33

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 14/33

- "Hashes" into *B* buckets in *B* log *B* time.
- Analogous to $u_j = \sum_{h(i)=j} \widehat{x}_i$.

- "Hashes" into *B* buckets in *B* log *B* time.
- Analogous to $u_j = \sum_{h(i)=j} \widehat{x}_i$.
- Issues:
 - "Hashing" needs a random hash function
 - Leakage
 - Want analog of $u'_j = \sum_{h(i)=j} i \cdot \hat{x}_i$.

- "Hashes" into *B* buckets in *B* log *B* time.
- Analogous to $u_j = \sum_{h(i)=j} \widehat{x}_i$.
- Issues:
 - "Hashing" needs a random hash function
 - * Access $x'_t = \omega^{-bt} x_{at}$, so $\hat{x'}_{at+b} = \hat{x}_t$ [GMS05]
 - Leakage

• Want analog of
$$u'_j = \sum_{h(i)=j} i \cdot \hat{x}_i$$
.

4 3 5 4 3

- "Hashes" into *B* buckets in *B* log *B* time.
- Analogous to $u_j = \sum_{h(i)=j} \widehat{x}_i$.
- Issues:
 - "Hashing" needs a random hash function
 - * Access $x'_t = \omega^{-bt} x_{at}$, so $\hat{x'}_{at+b} = \hat{x}_t$ [GMS05]
 - Leakage
 - Want analog of $u'_j = \sum_{h(i)=j} i \cdot \hat{x}_i$.
 - * Time shift $x'_t = x_{t-1}$: get phase shift $\hat{x'}_i = \omega^i \hat{x}_i$.

- "Hashes" into *B* buckets in *B* log *B* time.
- Analogous to $u_j = \sum_{h(i)=j} \widehat{x}_i$.
- Issues:
 - "Hashing" needs a random hash function
 - * Access $x'_t = \omega^{-bt} x_{at}$, so $\hat{x'}_{at+b} = \hat{x}_t$ [GMS05]
 - Leakage
 - Want analog of $u'_j = \sum_{h(i)=j} i \cdot \hat{x}_i$.
 - ★ Time shift $x'_t = x_{t-1}$: get phase shift $\hat{x'}_i = \omega^i \hat{x}_i$.

4 3 5 4 3 5 5

• Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \\ [GGIMS02,GMS05]) \end{cases}$

be the "boxcar" filter. (Used in

Observe

 $DFT(F \cdot x, B)$

-

A (B) > A (B) > A (B)

• Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ be [GGIMS02,GMS05])

vise be the "boxcar" filter. (Used in

Observe

 $DFT(F \cdot x, B) = subsample(DFT(F \cdot x, n), B)$

• Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ be the "boxcar" filter. (Used in [GGIMS02,GMS05])

Observe

 $DFT(F \cdot x, B) = subsample(DFT(F \cdot x, n), B) = subsample(\widehat{F} * \widehat{x}, B).$

4 E N 4 E N

• Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ be the "boxcar" filter. (Used in [GGIMS02,GMS05])

Observe

 $DFT(F \cdot x, B) = subsample(DFT(F \cdot x, n), B) = subsample(\widehat{F} * \widehat{x}, B).$

• DFT \hat{F} of boxcar filter is sinc, decays as 1/i.

- Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ be the "boxcar" filter. (Used in [GGIMS02,GMS05])
- Observe

 $DFT(F \cdot x, B) = subsample(DFT(F \cdot x, n), B) = subsample(\widehat{F} * \widehat{x}, B).$

- DFT \hat{F} of boxcar filter is sinc, decays as 1/i.
- Need a better filter F!

• Given $|\operatorname{supp}(F)| = B$, concentrate \widehat{F} .

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 17/33

-

A B F A B F

- Given $|\operatorname{supp}(F)| = B$, concentrate \widehat{F} .
- Boxcar filter: decays perfectly in time, 1/t in frequency.
 - Non-trivial leakage everywhere.

The Sec. 74

- Given $|\operatorname{supp}(F)| = B$, concentrate \widehat{F} .
- Boxcar filter: decays perfectly in time, 1/t in frequency.
 - Non-trivial leakage everywhere.
- Gaussians: decay as e^{-t^2} in time and frequency.
 - ▶ Non-trivial leakage to $O(\sqrt{\log n} \cdot \sqrt{\log n}) = O(\log n)$ buckets.

- Given $|\operatorname{supp}(F)| = B \log n$, concentrate \widehat{F} .
- Boxcar filter: decays perfectly in time, 1/t in frequency.
 - Non-trivial leakage everywhere.
- Gaussians: decay as e^{-t^2} in time and frequency.
 - ▶ Non-trivial leakage to $O(\sqrt{\log n} \cdot \sqrt{\log n}) = O(\log n)$ buckets.
- Still $O(B \log n)$ time when $|\operatorname{supp}(\widehat{F})| = B \log n$.
 - Non-trivial leakage to 0 buckets.

2012-04-27 17/33

4 3 5 4 3 5 5 3

- Given $|\operatorname{supp}(F)| = B \log n$, concentrate \widehat{F} .
- Boxcar filter: decays perfectly in time, 1/t in frequency.
 - Non-trivial leakage everywhere.
- Gaussians: decay as e^{-t^2} in time and frequency.
 - ▶ Non-trivial leakage to $O(\sqrt{\log n} \cdot \sqrt{\log n}) = O(\log n)$ buckets.
- Still $O(B \log n)$ time when $|\operatorname{supp}(\widehat{F})| = B \log n$.
 - Non-trivial leakage to 0 buckets.
 - Trivial contribution to correct bucket.

19 N A 19 N 19

- Let *G* be Gaussian with $\sigma = B\sqrt{\log n}$
- *H* be box-car filter of length n/B.

ъ

4 3 > 4 3

- Let G be Gaussian with $\sigma = B\sqrt{\log n}$
- *H* be box-car filter of length n/B.
- Use $\widehat{F} = \widehat{G} * H$.

ъ

A B F A B F

- Let G be Gaussian with $\sigma = B\sqrt{\log n}$
- *H* be box-car filter of length n/B.
- Use $\widehat{F} = \widehat{G} * H$.
- Hashes correctly to one bucket, leaks to at most 1 bucket.

- Let G be Gaussian with $\sigma = B\sqrt{\log n}$
- *H* be box-car filter of length n/B.
- Use $\widehat{F} = \widehat{G} * H$.
- Hashes correctly to one bucket, leaks to at most 1 bucket.

The Sec. 74

Filter (frequency): Gaussian * boxcar

-

< 6 b

(4) (5) (4) (5)

• "Pass region" of size n/B, outside which is negligible δ .

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 19/33

-

3 1 4

4 A N

• "Pass region" of size n/B, outside which is negligible δ .

• "Super-pass region", where \approx 1.

- "Pass region" of size n/B, outside which is negligible δ .
- "Super-pass region", where \approx 1.
- Small fraction (say 10%) is "bad region" with intermediate value.

- "Pass region" of size n/B, outside which is negligible δ .
- "Super-pass region", where \approx 1.
- Small fraction (say 10%) is "bad region" with intermediate value.
- Time domain has support size $O(B \log n)$.

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27

-

20/33

2012-04-27 20/33

-

< 6 b

2012-04-27 20/33

A b

2012-04-27 20/33

2012-04-27 20 / 33

-

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 20/33

ъ

A (10) A (10)

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27

A (10) A (10)

20 / 33

ъ

Lemma

If i is alone in its bucket and in the "super-pass" region,

$$u_{h(i)}=\widehat{x}_{i}.$$

Computing u takes $O(B \log n)$ time.

4 A N

Lemma

If i is alone in its bucket and in the "super-pass" region,

$$u_{h(i)} = \widehat{x}_i.$$

- Time-shift *x* by one and repeat: $u'_{h(i)} = \hat{x}_i \omega^i$.
- Divide to find *i*.

Permutation in time and frequency

- Can recover coordinates that are alone in their bucket and in the super-pass region.
- What if coordinates are near each other?

Permutation in time and frequency

- Can recover coordinates that are alone in their bucket and in the super-pass region.
- What if coordinates are near each other?
- Define the "permutation"

$$(P_{a,b}x)_i = x_{ai}\omega^{-ib}$$

Then

$$(\widehat{P_{a,b}x})_{ai+b}=\widehat{x}_i.$$

• For random a and b, each i is probably "well-hashed."

Permutation in time and frequency

- Can recover coordinates that are alone in their bucket and in the super-pass region.
- What if coordinates are near each other?
- Define the "permutation"

$$(P_{a,b}x)_i = x_{ai}\omega^{-ib}$$

Then

$$(\widehat{P_{a,b}x})_{ai+b}=\widehat{x}_i.$$

• For random a and b, each i is probably "well-hashed."

- Weak sparse recovery:
 - Permute with random *a*, *b*.
 - Hash to u
 - Time shift by one, hash to u'.
 - ► For *j* ∈ [*B*]
 - * Choose i^* by $u'_j/u_j = \omega^{i^*}$.
 - * Set $\widehat{x'}_{i^*} = u_j$.

EL SQA

A (10) A (10) A (10)

- Weak sparse recovery:
 - Permute with random *a*, *b*.
 - Hash to u
 - Time shift by one, hash to u'.
 - ► For *j* ∈ [*B*]
 - * Choose i^* by $u'_j/u_j = \omega^{i^*}$.
 - * Set $\widehat{x'}_{i^*} = u_j$.
- Full sparse recovery:
 - $\widehat{x'} \leftarrow \texttt{WeakRecovery}(x,k)$
 - ► $k \to k/2$, $x \to (x x')$, repeat.

315

- Weak sparse recovery:
 - Permute with random *a*, *b*.
 - Hash to u
 - Time shift by one, hash to u'.
 - ► For *j* ∈ [*B*]
 - * Choose i^* by $u'_j/u_j = \omega^{i^*}$.
 - * Set $\widehat{x'}_{i^*} = u_j$.
- Full sparse recovery:
 - $\widehat{x'} \leftarrow \texttt{WeakRecovery}(x,k)$
 - $k \to k/2, x \to (x x')$, repeat.
- Time dominated by hash to $B_r = k/2^r$ buckets in round *r*:
 - $B_r \log n$ to hash x.
 - Hashing $\hat{x'}$ takes $O(|\text{supp}(\hat{x'})|) = O(k)$.

4 3 > 4 3

- Weak sparse recovery:
 - Permute with random *a*, *b*.
 - Hash to u
 - Time shift by one, hash to u'.
 - ► For *j* ∈ [*B*]
 - * Choose i^* by $u'_j/u_j = \omega^{i^*}$.
 - * Set $\widehat{x'}_{i^*} = u_j$.
- Full sparse recovery:
 - $\widehat{x'} \leftarrow \texttt{WeakRecovery}(x,k)$
 - $k \to k/2, x \to (x x')$, repeat.
- Time dominated by hash to $B_r = k/2^r$ buckets in round *r*:
 - $B_r \log n$ to hash x.
 - Hashing $\hat{x'}$ takes $O(|\text{supp}(\hat{x'})|) = O(k)$.
- Time $\sum \left(\frac{k}{2^r} \log n + k\right) = O(k \log n)$.

Outline

1 Introduction

2 Special case: exactly sparse signals

3 General case: approximately sparse signals

4 Experiments

Hassanieh, Indyk, Katabi, and Price (MIT)

-

Nearly sparse signals

- What happens if only 90% of the mass lies in top *k* coordinates, not 100%?
- Want to find most "heavy" coordinates *i* with $|\hat{x}_i|^2 > ||x_{tail}||_2^2/k$.

Nearly sparse signals

- What happens if only 90% of the mass lies in top k coordinates, not 100%?
- Want to find most "heavy" coordinates *i* with $|\hat{x}_i|^2 > ||x_{\text{tail}}||_2^2/k$.

Lemma

Each *i* is "well-hashed" with large constant probability over the permutation (a, b). If *i* is well-hashed, then with time shift *c* we have

$$u_{h(i)} = \widehat{x}_i \omega^{ci} + \eta$$

so that for random *c*, the noise η is bounded by

 $\mathsf{E}[|\eta|^2] \lesssim \|\textbf{\textit{x}}_{\textit{tail}}\|_2^2/B$

Hassanieh, Indyk, Katabi, and Price (MIT)

< E ▶ < E ▶ E E ♡ Q @ 2012-04-27 25/33

• With good probability over *c*, get $u_{h(i)} = \hat{x}_i \omega^{c\pi(i)} + \eta$ with $|\eta| < |\hat{x}_i|/10$.

• With good probability over *c*, get $u_{h(i)} = \hat{x}_i \omega^{c\pi(i)} + \eta$ with $|\eta| < |\hat{x}_i|/10$.

- With good probability over *c*, get $u_{h(i)} = \hat{x}_i \omega^{c\pi(i)} + \eta$ with $|\eta| < |\hat{x}_i|/10$.
- Phase error $|\theta| \leq \sin^{-1}(\frac{|\eta|}{|\widehat{x}_i|}) < 0.11.$

Hassanieh, Indyk, Katabi, and Price (MIT)

- With good probability over *c*, get $u_{h(i)} = \hat{x}_i \omega^{c\pi(i)} + \eta$ with $|\eta| < |\hat{x}_i|/10$.
- Phase error $|\theta| \leq \sin^{-1}(\frac{|\eta|}{|\widehat{\chi}_i|}) < 0.11.$
- True for random *c*. For a fixed γ , run on *c* and *c* + γ to observe

 $\omega^{\gamma\pi(i)}$

to within 0.22.

Hassanieh, Indyk, Katabi, and Price (MIT)

- Find *i* from n/k possibilities in bucket.
- Choose any γ , then observe $\omega^{\gamma i}$ to within ± 0.1 radians.
- Constant number of bits, so hope for $\Theta(\log(n/k))$ observations.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We know *i* to within *R*.
- Set $\gamma = \lfloor n/R \rfloor$.
- Restrict and repeat, log(n/k) times.

- We only estimate $\omega^{\gamma i}$ well with 90% probability.
- Some of the log(n/k) restrictions will go awry.

Hassanieh, Indyk, Katabi, and Price (MIT)

- We only estimate $\omega^{\gamma i}$ well with 90% probability.
- Some of the log(n/k) restrictions will go awry.

Hassanieh, Indyk, Katabi, and Price (MIT)

- We only estimate $\omega^{\gamma i}$ well with 90% probability.
- Some of the log(n/k) restrictions will go awry.
- Two options:
 - Median of $O(\log \log(n/k))$ estimates.

- We only estimate $\omega^{\gamma i}$ well with 90% probability.
- Some of the log(n/k) restrictions will go awry.
- Two options:
 - Median of $O(\log \log(n/k))$ estimates.
 - Can avoid the loss: learn log log(n/k) bits at a time.

• Shown how to find most heavy hitters.

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 30 / 33

315

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.

< 6 b

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.
 - With a little additional noise [Gilbert-Li-Porat-Strauss '10]

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.
 - With a little additional noise [Gilbert-Li-Porat-Strauss '10]
- Repeat on $\widehat{x x'}$, with $k \to k/2$.

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.
 - With a little additional noise [Gilbert-Li-Porat-Strauss '10]
- Repeat on $\widehat{x x'}$, with $k \to k/2$.
- Takes $O((B_i \log n + k) \log(n/B_i))$ time in round *i*, with B_i buckets.
General k-sparse algorithm

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.
 - With a little additional noise [Gilbert-Li-Porat-Strauss '10]
- Repeat on $\widehat{x x'}$, with $k \to k/2$.
- Takes $O((B_i \log n + k) \log(n/B_i))$ time in round *i*, with B_i buckets.
 - Previous recursion: $B_i \simeq k_i \simeq k/2^i$ gives

 $k \log n \log k \gg n \log n$

General k-sparse algorithm

- Shown how to find most heavy hitters.
- Straightforward to estimate their value.
- Gives "weak sparse recovery": *k*-sparse $\hat{x'}$ such that $\hat{x x'}$ is k/2-sparse.
 - With a little additional noise [Gilbert-Li-Porat-Strauss '10]
- Repeat on $\overline{x} \overline{x'}$, with $k \to k/2$.
- Takes $O((B_i \log n + k) \log(n/B_i))$ time in round *i*, with B_i buckets.
 - Previous recursion: $B_i \simeq k_i \simeq k/2^i$ gives

 $k \log n \log k \gg n \log n$

• Instead: $B_i \simeq k/i^{\Theta(1)}$, $k_i \simeq k/i!$ gives

 $k \log n \log(n/k)$

Outline

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

. 2012-04-27 31/33

< 6 b

Empirical performance of exact sparse algorithm

Compare to FFTW, previous best sublinear algorithm (AAFFT).
Faster than FFTW for k/n < 3%.

Hassanieh, Indyk, Katabi, and Price (MIT)

2012-04-27 32/33

▶ < ≣

Conclusions and Future Work

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log \frac{n}{k} \log n)$ for approximation.
- Beats FFTW for k/n < 3% (in the exact case).
- Open problems:
 - Can we get k log n for approximate recovery?
 - Hadamard matrix / FFT over finite fields?
 - n not a power of 2?
 - Higher probability of success without log(1/δ) slowdown?
 - Stronger approximation guarantee, like ℓ_{∞}/ℓ_2 ?
 - Better recovery of off-grid frequencies?

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 34/33

SODA empirical Performance: runtime

- Compare to FFTW, previous best sublinear algorithm (AAFFT).
- Offer a heuristic that improves time to $\tilde{O}(n^{1/3}k^{2/3})$.
 - Filter from [Mansour '92].
 - Can't rerandomize, might miss elements.
- Faster than FFTW for n/k > 2,000.
- Faster than AAFFT for n/k < 1,000,000.

2012-04-27 35/33

SODA empirical Performance: noise

Just like in Count-Sketch, algorithm is noise tolerant.

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

2012-04-27 36/33

Saving a $\log \log(n/k)$ factor

- Could use only $\log(n/k)$ samples by taking random γ :
 - For $\tau' \neq \tau$, $\omega^{\gamma(\tau'-\tau)}$ uniform over circle.
 - Hence $\omega^{\gamma \tau'}$ probably far from the observations.
 - Distinguish among n/k possibilities with log(n/k) samples.
- Takes n/k log(n/k) time to test all possibilities.
- Idea: mix the two approaches.
 - Split region into log(n/k) subregions of size *w*.
 - Choose random $\gamma \in [\frac{n}{8w}, \frac{n}{4w}]$.
 - Small enough that subregions remain local.
 - Large enough that far subregions roughly uniform.
 - Identify subregion exhaustively: log log(n/k) measurements and log(n/k) log log(n/k) time.
 - Repeat $\log_{\log(n/k)}(n/k)$ times to identify τ .
 - Total $\log(n/k)$ measurements, $\log^2(n/k)$ time.