Outline

1. Introduction
2. Algorithm
3. Experiments
The Discrete Fourier Transform

- Discrete Fourier transform: given \(x \in \mathbb{C}^n \), find

\[
\hat{x}_i = \sum x_j \omega_{ij}
\]

- Fundamental tool
 - Compression (audio, image, video)
 - Signal processing
 - Data analysis
 - ...

- FFT: \(O(n \log n) \) time.

Sparse Fourier Transform

- Often the Fourier transform is dominated by a small number of "peaks"
 - Precisely the reason to use for compression.
- If most of mass in k locations, can we compute FFT faster?
Previous work

- Boolean cube: [KM92], [GL89]. What about \mathbb{C}?
- [Mansour-92]: $k^c \log^c n$.
- Long list of other work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: $k \log^4 n$.
 - All have poor constants, many logs.
 - Need $n/k > 40,000$ or $\omega(\log^3 n)$ to beat FFTW.
 - Our goal: beat FFTW for smaller n/k in theory and practice.
 - Result: $n/k > 2,000$ or $\omega(\log n)$ to beat FFTW.
Our result

- Simple, practical algorithm with good constants.
- Compute the k-sparse Fourier transform in $O(\sqrt{kn} \log^{3/2} n)$ time.
- Get \hat{x}' with approximation error

 $$\|\hat{x}' - \hat{x}\|_\infty \leq \frac{1}{k} \|\hat{x} - \hat{x}_k\|_2$$

- If \hat{x} is sparse, recover it exactly.
- Caveats:
 - Additional $\|x\|_2/n^{\Theta(1)}$ error.
 - n must be a power of 2.
If \hat{x} is k-sparse with known support S, find \hat{x}_S exactly in $O(k \log^2 n)$ time.

In general, estimate \hat{x} approximately in $\widetilde{O}(\sqrt{nk})$ time.
Intuition

n-dimensional DFT of first B terms.

B-dimensional DFT of first B terms.
“Hashes” into B buckets in $B \log B$ time.

Issues:

- “Hashing” needs a random hash function
 - Access $x'_t = \omega^{-at}x_{\sigma t}$, so $\hat{x}'_t = \hat{x}_{\sigma^{-1}t+a}$ [GMS-05]
- Collisions
 - Have $B > 4k$, repeat $O(\log n)$ times and take median. [Count-Sketch, CCF02]
- Leakage
- Finding the support. [Porat-Strauss-12], talk at 9:45am.
Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ be the “boxcar” filter. (Used in [GGIMS02,GMS05])

Observe

\[
\text{DFT}(F \cdot x, B) = \text{subsample}(\text{DFT}(F \cdot x, n), B) = \text{subsample}(\hat{F} \ast \hat{x}, B).
\]

\[
\text{DFT} \hat{F} \text{ of boxcar filter is sinc, decays as } 1/i.
\]

Need a better filter F!
Observe subsample $(\hat{F} \ast \hat{x}, B)$ in $O(B \log B)$ time.

Needs for F:
- $\text{supp}(F) \in [0, B]$
- $|\hat{F}| < \delta = 1/n^{\Theta(1)}$ except “near” 0.
- $\hat{F} \approx 1$ over $[-n/2B, n/2B]$.

Gaussians:
- Standard deviation $\sigma = B/\sqrt{\log n}$
- DFT has $\hat{\sigma} = (n/B)\sqrt{\log n}$
- Nontrivial leakage into $O(\log n)$ buckets.
- But likely trivial contribution to correct bucket.
Observe subsample \((\hat{F} \ast \hat{x}, B)\) in \(O(B \log B)\) time.

Needs for \(F\):
- \(\text{supp}(F) \in [0, B]\)
- \(|\hat{F}| < \delta = 1/n^{\Theta(1)}\) except “near” 0.
- \(\hat{F} \approx 1\) over \([-n/2B, n/2B]\).

Gaussians:
- Standard deviation \(\sigma = B/\sqrt{\log n}\)
- DFT has \(\hat{\sigma} = (n/B)\sqrt{\log n}\)
- Nontrivial leakage into \(O(\log n)\) buckets.
- But likely trivial contribution to correct bucket.
Observe subsample($\hat{F} \ast \hat{x}, B$) in $O(B \log B)$ time.

Needs for F:

- $\text{supp}(F) \in [0, B \log n]$
- $|\hat{F}| < \delta = 1/n^{\Theta(1)}$ except “near” 0.
- $\hat{F} \approx 1$ over $[-n/2B, n/2B]$.

Gaussians:

- Standard deviation $\sigma = B/\sqrt{\log n} B \cdot \sqrt{\log n}$
- DFT has $\hat{\sigma} = (n/B) \sqrt{\log n} (n/B)/\sqrt{\log n}$
- Nontrivial leakage into 0 buckets.
- But likely trivial contribution to correct bucket.
Let G be Gaussian with $\sigma = B \sqrt{\log n}$.

H be box-car filter of length n/B.
Let G be Gaussian with $\sigma = B \sqrt{\log n}$

H be box-car filter of length n/B.

Use $\hat{F} = \hat{G} \ast H$.

- $F = G \cdot \hat{H}$, so $\text{supp}(F) \subset [0, B \log n]$.
- $|\hat{F}| < 1/n^{\Theta(1)}$ outside $-n/B, n/B$.
- $|\hat{F}| = 1 \pm 1/n^{\Theta(1)}$ within $n/2B, n/B$.

Hashes correctly to one bucket, leaks to at most 1 bucket.

Replace Gaussians with “Dolph-Chebyshev window functions”: factor 2 improvement.
Algorithm to estimate \hat{x}_S

- For $O(\log n)$ different permutations of \hat{x}, compute subsample$(\hat{F} \ast \hat{x}, B)$.
- Estimate each x_i as median of values it maps to.
Algorithm to estimate \hat{x}_S

- For $O(\log n)$ different permutations of \hat{x}, compute subsample($\hat{F} \ast \hat{x}, B$).
- Estimate each x_i as median of values it maps to.
Algorithm to estimate \hat{x}_S

- For $O(\log n)$ different permutations of \hat{x}, compute subsample$(\hat{F} \ast \hat{x}, B)$.
- Estimate each x_i as median of values it maps to.
Algorithm to estimate \hat{x}_S

- For $O(\log n)$ different permutations of \hat{x}, compute subsample($\hat{F} \ast \hat{x}, B$).
- Estimate each x_i as median of values it maps to.
Algorithm in general

- For $O(\log n)$ different permutations of \hat{x}, compute subsample($\hat{F} \ast \hat{x}, B$).
- Estimate each x_i as median of values it maps to.
Algorithm in general

- For $O(\log n)$ different permutations of \hat{x}, compute subsample($\hat{F} \ast \hat{x}, B$).
- Estimate each x_i as median of values it maps to.
- To find S: choose all that map to the top $2k$ values.
Algorithm in general

- For $O(\log n)$ different permutations of \hat{x}, compute subsample($\hat{F} \ast \hat{x}$, B).
- Estimate each x_i as median of values it maps to.
- To find S: choose all that map to the top $2k$ values.
- nk/B candidates to update at each iteration: total

\[
(\frac{nk}{B} + B \log n) \log n = \sqrt{nk} \log^{3/2} n
\]

time.
Compare to FFTW, previous best sublinear algorithm (AAFFT).

Offer a heuristic that improves time to $\tilde{O}(n^{1/3}k^{2/3})$.
 ▶ Filter from [Mansour ’92].
 ▶ Can’t rerandomize, might miss elements.

Faster than FFTW for $n/k > 2,000$.

Faster than AAFFT for $n/k < 1,000,000$.
Empirical Performance: noise

- Just like in Count-Sketch, algorithm is noise tolerant.
Conclusions

- Roughly: fastest algorithm for $n/k \in [2 \times 10^3, 10^6]$.
- Recent improvements [HIKP12b?]
 - $O(k \log n)$ for exactly sparse \hat{x}
 - $O(k \log \frac{n}{k} \log n)$ for approximation.
 - Beats FFTW for $n/k > 400$ (in the exact case).