
High-Throughput Implementation of a Million-Point
Sparse Fourier Transform

Abhinav Agarwal, Haitham Hassanieh, Omid Abari, Ezz Hamed, Dina Katabi & Arvind
Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, MA, USA

Email: {abhiag, haitham, abari, ezz, dina, arvind}@csail.mit.edu

Abstract—The emergence of data-intensive problems in areas
like computational biology, astronomy, medical imaging, etc. has
emphasized the need for fast and efficient very large Fourier
Transforms. Recent work has shown that we can compute
million-point transforms efficiently provided the data is sparse
in the frequency domain. Processing input samples at rates
approaching 1 GHz would allow real-time processing in several
such applications. In this paper, we present a high-throughput
FPGA implementation that performs a million-point sparse
Fourier Transform on frequency-sparse input data, generating the
largest 500 frequency component locations and values every 1.16
milliseconds. This design can process streamed input data at 0.86
Giga samples per second, and does not make any assumptions of
the distribution of the frequency components beyond sparsity.

I. INTRODUCTION

Processing million-point Fourier Transforms in real time
can enable numerous applications ranging from GHz-wide
spectrum sensing and radar signal processing to high resolution
computational photography and medical imaging. Increasing
the size of the transform is important for precisely pinpoint-
ing/localizing the sparse signals present in large frequency
bands. Using a fast million-point transform allows such local-
ization in a single step at a fast refresh rate. As an example,
such a design could be used for real-time tracking of a
narrow-band rogue transmission that is rapidly frequency-
hopping across a wide-band range. Today, efficient million-
point Fast Fourier Transforms (FFTs) are not practical. Hard-
ware implementations of such large FFTs are prohibitively
expensive in terms of high energy consumption and large area
requirements. However, for most of the above applications the
Fourier transform is sparse which means that only few of the
output frequencies have energy and the rest are noise. Recent
work [1] in the field of algorithms has shown how to compute
these sparse FFTs (SFFT) in sub-linear time more efficiently
than standard FFTs using much smaller number of samples
than what is needed to compute the full FFT.

In fact, there are several SFFT algorithms which make
different assumptions about the input [2]. A hardware im-
plementation of a different version of SFFT was recently
published [3]. Our FPGA implementation differs from [3] in
two key aspects. First, the design in [3] is customized for
a specified signal size whereas our implementation provides
configurable parameters and hence can be adopted by various
applications. Second, the algorithm underlying our implemen-
tation is more robust to noise. Specifically, [3] identifies active
frequencies by computing exact phase rotation which is very
sensitive to noise. In contrast, our approach identifies active
frequencies by comparing values and hence it can tolerate a

significant amount of noise. Further, it does not require the user
to provide a noise threshold. This algorithm is consequently
more computationally and memory intensive with additional
steps of max-selection, voting and book-keeping of extremely
large data vectors. This algorithm has been implemented in
software, but the published implementations [4], [5] are unable
to achieve high input data rates. These implementations are
also not efficient from the perspectives of power, energy, unit
cost or form factor.

For some of the applications, e.g., detection of frequency
hopping transmissions, it is necessary to accept the input
data in a streaming manner. This complicates implementa-
tion because the SFFT algorithm has been described using
large shared data structures on which fast computation and
comparisons need to be made. For hardware implementations,
operations on such large data structures are impractical. This
paper presents the first FPGA-based design of SFFT that
works on streaming data at GHz rates. In particular, we can
process million points of frequency-sparse streaming data to
generate the locations and values of the largest 500 frequency
coefficients in 1.16 milliseconds. This translates into input data
rates of 0.86 Giga samples per second. The main contributions
of our work include the following:

• The first dataflow description of the SFFT algorithm. The
challenge here was to convert a control-centric description
of the algorithm to a data-centric version.
• Determining the appropriate parameters of the algorithm

to achieve our target performance goals without sacrificing
accuracy and yet fit within the limited FPGA resources.
These algorithmic parameters include the size of dense
FFT to be used for a given sparsity level of the input
and the number of iterations needed to identify all sparse
frequencies.
• Novel hardware structures for Voter and Value Compute

modules (see section III). For other modules such as Dense-
FFT and Selector, we modified known hardware structures.
• A parameterized architecture so that the design can be

used in various frequency-sparse applications.

In Section II, we give a brief overview of the SFFT algo-
rithm that serves as the background for our implementation.
In Section III we describe the design architecture of various
component modules and how they interact with each other.
In Section IV, we present the FPGA implementation results,
discuss resource usage and performance of the design, and
compare with existing software implementations. Finally, we
present our conclusions in Section V.

II. BACKGROUND

SFFT is an iterative algorithm where in each iteration,
the million N frequencies are mapped to B buckets. This is
done by performing a B-point FFT on a sample of B input
points. The energy or the value of each bucket is the sum
of the values of the N/B frequencies that are mapped into
the bucket. By carefully choosing the input samples, one can
ensure that in each iteration different frequencies will map
into different buckets with high probability. The algorithm
repeats the bucketization process with a permuted set of input
time samples. This results in a permutation of the frequency
components and randomizes the mapping of frequencies to
buckets [1].

Given an N-dimensional vector x, let xi denote the ith

element of the vector and let x̂ denote its Discrete Fourier
Transform (DFT). Then for some permutations y of x, it turns
out that ŷ is a permutation of x̂. We call such permutations, in-
verse modulo permutations (IMP). We need to define invertible
integers before defining IMP.

An integer σ is invertible modulo N , if there exists another
integer σ−1 such that (σ × σ−1) (mod N) = 1. If N is a
power of 2, then all odd integers are invertible modulo N .
Inverse modulo permutation, Pσ , is defined with respect to an
integer σ that is invertible modulo N . For a given vector x,
let y denote Pσ(x). Then yi = xj with j = (σ× i) (mod N).
For such a pair of x and y, permutation in the time domain
corresponds to inverse modulo permutation Pσ−1 in frequency
domain, i.e., ŷi = x̂j where j = (σ−1 × i) (mod N).

For each iteration, we select different random values for σ
from the set of invertible integers, to get different mappings of
frequencies into buckets. As an example, consider a 64-point
input dataset whose frequency-transform has a single non-zero
frequency component, whose frequency index and magnitude
needs to be determined. When the sub-sampled input goes
through an 8-point FFT, the non-zero component would land
in one of 8 buckets, whose value would be higher than all other
buckets. This bucket would have 8 candidate frequencies, one
of which is the actual non-zero component. For the chosen
example, we have two bucketization iterations with selected
values of σ as 17 and 55. The values of sigma are randomly
selected, as long as each is invertible modulo 64. Given these
values, each frequency index gets mapped to one of 8 buckets,
as shown in Table I.

Figure 1 illustrates how the non-zero frequency component
is located by determining the intersection of candidate frequen-
cies from each iteration. Bucket B1 in iteration 1 and bucket
B5 in iteration 2 are the high buckets. The only frequency
index that is common to these two buckets is 25. Thus, 25 is the
required non-zero frequency component. The SFFT algorithm
describes this step as a voting process, where all candidate
frequencies landing in high buckets receive a vote. Non-zero
frequency components receive votes in all iterations as they
land in high buckets in every iteration. By tallying the votes
after all iterations, frequency components with the most votes
are the non-zero frequency components. The explanation we
have provided in terms of set intersection is more suitable from
an implementation point of view.

As the number of non-zero frequency components in the
input increases, the number of high buckets in each iteration

Table I. Mapping input frequency indices into buckets for given sigma
values for N = 64. Bucketization for further iterations is produced similarly.

Bucket Iteration 1 Iteration 2
Index (σ, σ−1) = (17, 49) (σ, σ−1) = (55, 7)
B0 0,4,17,21,34,38,51,55 0,1,10,19,28,37,46,55
B1 8,12,25,29,42,46,59,63 2,11,20,29,38,47,56,57
B2 3,7,16,20,33,37,50,54 3,12,21,30,39,48,49,58
B3 11,15,24,28,41,45,58,62 4,13,22,31,40,41,50,59
B4 2,6,19,23,32,36,49,53 5,14,23,32,33,42,51,60
B5 10,14,27,31,40,44,57,61 6,15,24,25,34,43,52,61
B6 1,5,18,22,35,39,48,52 7,16,17,26,35,44,53,62
B7 9,13,26,30,43,47,56,60 8,9,18,27,36,45,54,63

Itera&on)1))

Itera&on)2))

Candidate)
frequency)
loca&ons))

1)) 2) 3) 4) 5) 6) 7)0))

1)) 2) 3) 4) 5) 6) 7)0))

25)

25)

8) 12) 29) 42) 46) 59) 63)

6) 15) 24) 34) 43) 52) 61)

Sparse)frequency)loca&on))

Fig. 1. The colored bucket indicates the bucket with high value. The chosen
example has a single non-zero frequency component. Since B1 of iteration
1 and B5 of iteration 2 have only one frequency index in common, x̂25, it
must be the sparse frequency component. If these buckets had more than one
frequency in common, further iterations would be required for disambiguation.

also increases and we need more iterations to determine
the indices of the non-zero components. In the final step
of the SFFT algorithm, the values of the located frequency
components are estimated from the average of the values of
the buckets that they are mapped into in each iteration.

III. ARCHITECTURE

The SFFT implementation consists of several modules,
each implementing a distinct stage of the algorithm. Figure 2
shows the various stages involved in the SFFT algorithm.
The first two blocks implement the sampling and filtering
stage, while the subsequent four blocks (highlighted in blue in
Figure 2) are the SFFT Core. The sampling and filtering stage
generates small data slices from the million-point input for the
SFFT Core, as shown in Figure 3. The SFFT Core modules
are responsible for the bulk of the computation and resource
usage in the algorithm. In this paper, we will focus on the
implementation of the Core modules with the first stage used
as a pre-computation step. However, for better understanding
of the algorithm, we first provide a brief description of the first
stage and its implementation.

The sampling step involves minimal computation, and
simply uses a pre-determined table of values1 to select input
samples from the million-point dataset to generate eight 8192-
point input slices. Each of these slices is multiplied by a
filter and then aliased in half to generate eight 4096-point
input slices for the SFFT Core. The aliasing step increases
robustness of the algorithm [1]. As long as the sampling step

1Selected samples are x[σki]mod n
, where k = 1..8 and i = 1..8192

Generate'Input'Slices'
(Sampling'&'permuta4ons)'

Mul4ply'by'filter:'W'='8192'
&'Aliasing:'B'='4096'samples'

Perform'dense'FFT'
For'each'slice:'4096'pt'

Find'loca4ons'of'511'
largest'buckets'in'each'

itera4on'

Determine'frequencies'
landing'in'large'buckets'in'

all'itera4ons'

Determine'values'of'selected'frequency'components'

Repeat'8'4mes,'with'a'different'input'
slice'each'4me'

Input'
Datastream'

Output'
Frequencies'

Fig. 2. Stages of the SFFT algorithm. Core stages are highlighted.

Sampling)
&)

Filtering)

1)GHz)sampling)rate:)
1)million)inputs))
every)1)ms)

8)input)slices,)
each)with)4096)
datapoints)

SFFT)
Core)

TopE500)frequency)
component))

locaIons)and)values)

Fig. 3. Input-output characteristics for sampling and SFFT Core

Table II. Parameters for SFFT Core implementation

Parameter Value
Input data type Complex fixed-point
Fractional bits for fixed-point data 24
Total number of input data values 220

Maximum non-zero input frequency 500
Number of iterations in algorithm 8
Size of FFT in each iteration 4096

can supply input slices at the rate of computation by the SFFT
Core, the overall throughput is unaffected. Figure 4 shows
how this stage is implemented using stored address values for
each input sample to be used2. The 3-bit Repetitions value
indicates how many times a particular input sample is used,
as it could be present in any number of the 8 input slices. The
13-bit position address is used to multiply the input sample
with the corresponding filter time sample. The aliasing step
is implemented by using only the 12 LSBs of the position
address for storage and adding the previously stored value at
the 12-bit address to filtered data sample.

Figure 5 shows the modules used in our implementation of
the SFFT Core and their input-output semantics. Our design
has been parameterized to allow design exploration and to
generate optimized results for the desired specifications. The
parameters chosen for the discussed implementation are given
in Table II. We chose the input data type to be complex fixed-
point with 24 fractional bits for each of the real and imaginary
components. The high number of fractional bits ensures that
we have sufficient accuracy for various applications. The
number of input samples is 220, thus each input sample has
a 20-bit location index and a 64-bit value (accounting for
real and imaginary sign bit, integral bit and six overflow
bits). The input data is constrained to have a maximum of
500 non-zero frequency coefficients. Increasing the number

2Maximum of 8 × 8192 input values are used. A separate 1-bit value for
each of the million input samples indicates whether it is used.

Repe$$ons(
Slice(

Address(
Posi$on(
Address(

32bit(value(32bit(value(132bit(value(

Use(12(LSBs(

For(each(selected(input(sample:(
192bit(address(lookup(

1(8(

1(

4096(

8(x(4096(datapoint(slice(storage(

Fig. 4. Address lookup used for sampling and filtering input data points

Dense%
FFT%

Max%
Selector%

Voter% Value%
Compute%

8%Input%
Data%Slices%

4096=point%FFT%Values%
for%8%itera?ons%

Largest%511%FFT%
Indices%per%itera?on%

Largest%500%
Freq%Indices%

Largest%500%Freq%
Index=Value%pairs%

Fig. 5. Modules implementing the SFFT Core

of iterations and size of FFT in each iteration, increases the
accuracy of the probabilistic SFFT algorithm. But it also
increases the resource usage and time required for completion.
We chose 8 iterations with a 4096-point FFT in each iteration,
as this choice gave sufficient accuracy while still providing
an achievable hardware target. Each module was targeted to
achieve a minimum operating frequency of 100 MHz. We next
describe the architecture of the SFFT Core modules in detail.

A. 4096-point FFT

The SFFT algorithm requires taking a standard FFT of
filtered input data slices, which we refer to as dense FFT.
Our design of the dense FFT module was required to have
a high throughput, low area and maximum size of the FFT
possible. The larger the size of the FFT, the lower is the chance
of collisions occurring due to non-zero frequency components
being mapped to the same bucket. Initial attempts to use folded
in-place FFT designs [6] failed, as they did not scale to a
size beyond 512 points for the 24-bit input data. Instead,
this implementation uses a fully pipelined streaming FFT
architecture [7], utilizing a Radix-22 Single Delay Feedback.
This design has a simple control structure with near-optimal
storage and computation resource usage.

We extended the 256-point design cited in [7] to the
required 4096-point FFT. To make this increase and allow
efficient mapping to FPGA, we had to make several changes.
We prevented the occurrence of a long critical path, by
making each internal block of the FFT architecture a latency-
insensitive parameterized module, designed as shown in Fig-
ure 6, with buffered input-output queues. Latency insensitivity
implies that the depth of the queues does not affect correctness
of the design. In the figure, N is a parameter that varies
from 1 to 1024. The original design had a large single
counter that controlled all stages synchronously. We split it
into independent 2-bit counters for each stage. Figure 7 shows
how the internal blocks are instantiated with appropriate pa-
rameter values to generate the pipelined 4096-point dense FFT
implementation. We used pipelined multipliers for complex
fixed-point arithmetic, and adequate buffering in FIFO queues
between blocks to allow the design to continuously stream data

BFB#BFA#

N#2N#

S1# S1# S0#

0#1#
Trigger#

(every#N#cycles)#

X1#

Y1#

X2#

Y2# Z2#

X3#

Y3#

Shi;#
Registers#

Fig. 6. Single parameterized block of streaming FFT

W0# W1# W2# W3# W4#

X#X# BF##
(N#=#16)#

X# BF##
(N#=#64)#

X#BF#
(N#=#1024)#

BF##
(N#=#256)# X# BF##

(N#=#1)#

X[k]#x[n]# BF##
(N#=#4)#

Fig. 7. Architecture of the 4096-point dense FFT

across iterations as an elastic pipeline. The twiddle factors Wi

used in the computation were generated as a look-up table that
each block can independently query for values. The indices for
the twiddle factors are determined by the collective value of the
2-bit counters present in each block. Each block has two shift
registers that map directly to FPGA shift registers. Absence
of large multiplexers, which are usually present in folded in-
place FFT designs, allows this implementation to be highly
efficient in FPGA resource usage. The design is parameterized
for the input data type, FFT size and amount of pipelining in
the complex multipliers.

B. Max Selector: Buckets with maximum value

In the previous stage, by performing the 4096-point FFT we
mapped the 220 input frequencies into 4096 buckets. This stage
determines which of these buckets have a large magnitude,
indicating that one or more of the frequencies mapped to them
are non-zero. Selecting buckets by setting a threshold would
have been sensitive to noise levels in input and hence, not
robust. Sorting all the FFT outputs to generate the ordered
magnitudes was observed to be highly resource intensive and
time consuming, as well as overkill since the algorithm does
not require them to be ordered. Instead, we implement this step
by selecting the largest (but unordered) 511 magnitudes of the
4096-point FFT output for each iteration. The chosen selector
architecture operates on 2n − 1 entries, hence the number of
entries being 511. Since the input data has a maximum of 500
non-zero frequency coefficients, selecting top 511 buckets by
magnitude was sufficient.

Our design is based on a pipelined heap priority queue ar-
chitecture [8]. This architecture is suitable for high-speed heap
operations for structures with hundreds of entries. Figure 8
shows our implementation of the Top-511 element selector.
We modified the ASIC architecture in [8] to allow for efficient
mapping to FPGAs, including single port communication be-
tween stages of the heap, address tagging of entries, individual
operation counters in each stage to cut critical path, use of
Register File structures for storing values, and the method of
generating the output as a bit vector. The magnitudes of the
FFT outputs are tagged with their indices and inserted into a
binary tree structure with 511 entries. Entries are addressed
from 1 to 511, with the kth entry being the parent of (and
smaller in magnitude than) 2kth and 2k + 1st entries. Thus,
the 1st entry, called the root, has the smallest magnitude of

1"

2" 3"

4" 5" 6" 7"

Root"

256" 511"

Parent"

Children"for"Item"#2"
""

Queues"containing"Address@
tagged"Insert/Replace"requests"

Fig. 8. Architecture of the Max Selector module

all the entries in the tree. The entries are divided into stages,
each stage containing indices from 2i to 2i+1 − 1, where i goes
from 0, for the root stage which has a single entry, to 8, for the
last stage which has 256 entries. This allows write operations
to be localized and prevents generation of large multiplexers
during FPGA synthesis. In the first phase of operation, new
elements are filled into the tree in ascending order of addresses,
pushing larger entries down and maintaining the root as the
minimum entry. The next address to be filled is appended as
a tag with incoming entries.

Once the first 511 FFT outputs are inserted into the tree,
the second phase starts with further streaming inputs being
compared with the root to check whether they are larger than
the root. Only if they are, they replace the root element and
checks are done to maintain parent children relationships in
the tree. For reducing the critical path, dependencies between
adjoining stages were kept to a minimum and storage structures
were made hierarchical. The queues between stages of the
binary tree allow a pipelined design that can allow insertions
into an unfilled tree every cycle, and replacements in a filled
tree every alternate cycle. At the end of processing all 4096
FFT outputs, the tree contains the largest 511 magnitudes, each
tagged with their corresponding location in the FFT output.
The module output is a 4096-bit vector, with a high bit for
each of the 511 selected FFT outputs.

C. Voter: Locating the top frequencies

This stage receives as input eight 4096-bit vectors with
the large buckets indicated by the bits set to 1. Each of these
buckets constitutes a set of 256 candidate frequencies that were
mapped to this bucket using randomized permutations. This
stage determines the frequency indices that have landed in top
buckets in all iterations. The process can be understood as eight
rounds of voting, with each iteration incrementing the votes of
511× 256 distinct frequency indices and the final selection of
indices with eight votes.

Implementing the stage as a naive iterative voting struc-
ture would have required book-keeping of nearly a million
votes spread across a million candidate frequency locations.
Implementing such a data structure in FPGA with the reading,
writing and comparison of the votes for all candidates occur-
ring within the required performance constraints is impractical.
Since the values of σ chosen for each iteration are statically
known, it is conceivable that a table of values can be generated
that provides the static condition for each frequency index to
be non-zero. But, this also runs into the issue of reading and
comparing values from an extremely large data structure.

1" 2" 4096"3" 4"

f1" f2" f256"

Itera0on"2a"

Itera0on"8"

Itera0on"1"

Common"frequency"
indices"output"

Itera0on"2b"

Fig. 9. Architecture of the Voter module implemented as a series of filters.
Large buckets for each iteration have been highlighted in blue.

Instead, our implementation is a novel pipelined filter-
ing process where we track candidate frequencies, instead
of keeping track of votes. Candidate frequency indices are
generated by the first iteration in a stepwise manner and are
passed through seven filters. Each filter maps the incoming
candidate frequency to the appropriate bucket for that iteration
and checks if it lands in a top-511 bucket in the corresponding
bit vector. If it does land in a large bucket, it is sent to the
subsequent iteration otherwise it is discarded. The mapping
functions are unique for each iteration and relate to the
permutations used for generating the input data slices. At the
end of the filtering process, only those frequency indices are
passed through to the next stage which have been present
in top buckets for all iterations. In order to further improve
the throughput of this stage, we parallelized the processing
of candidate frequencies by the second stage. For this, we
duplicated the filter for the second iteration, seen as 2a and 2b
in Figure 9, mapping 128 odd-indexed frequencies to 2a and
128 even-indexed frequencies to 2b for each high bucket in the
first iteration. This decreased the number of cycles required
to process the data by nearly 50% as most of the candidate
frequencies get filtered out at the second iteration itself.

D. Value Compute: Magnitudes of top frequencies

This stage is responsible for computing the value of the
top frequency components that have been determined by the
previous stages. FFT outputs produced for all eight iterations
are forwarded to the Value Compute module. They are stored
locally in a Block-RAM memory structure with eight memory
banks, which allows simultaneous processing of read requests
from all eight banks.

The frequency locations determined to be non-zero in the
input, obtained from the voter module, are mapped to their
respective bucket locations for each iteration. Corresponding
FFT outputs are read from the memory banks for each location.
These eight bucket values for each selected frequency are then
averaged to obtain the final value of the frequency components.
Figure 10 shows the architecture designed for this module.

E. SFFT Core

The use of high-level latency insensitive interface specifica-
tions for component modules allows elegant plug and play gen-
eration of complex designs. This enabled us to quickly connect
the various modules to generate the SFFT Core design. During

Dense%FFT%
Value%input%

4096%%
entries%

Voter%
Frequency%
index%input%

20%bit%Frequency%Index%

12%bit%bucket%
addresses%

Unique%mapping%for%each%iteraDon%

Complex%
FixedFpoint%%
FFT%Values%

Average%
Value%

Frequency%
IndexFValue%
pair%output%

Fig. 10. Architecture of the Value Compute module

design exploration, we had to modify the internal structure of
various modules as a result of algorithmic modifications or
for meeting resource and performance constraints. However,
generating the overall design was straightforward once the
component modules were complete. Adequate buffers were
added to latency insensitive FIFO queues between modules
to allow individual blocks to run at different rates without
stalling the entire design. This was beneficial for the overall
performance since several modules produced outputs sporadi-
cally and in a data-dependent manner.

IV. IMPLEMENTATION RESULTS

The SFFT Core was designed using Bluespec SystemVer-
ilog [9], a high-level hardware design language, that allows
expression of parametrization and latency insensitive interfaces
in the architecture. The design was synthesized, placed and
routed for Xilinx ML605 platform with the target device as
XC6VLX240T FPGA and the target clock frequency as 100
MHz. Table III shows the percentage Virtex-6 FPGA resource
utilization of various modules of the implementation as well
as the complete SFFT Core. Different modules have varying
resource requirements due to the wide variety of designs. The
Dense-FFT module has the highest DSP slice utilization, due
to the use of pipelined multipliers for the complex fixed-
point data. The Max Selector module has the maximum LUTs
utilization, 18% of the total, due to the logic generated for
reading and writing various entries in each internal stage. The
Value Compute module has the maximum BRAM utilization
of 14% for storing the FFT outputs for all eight iterations.
Overall, as seen in the data, the Core fits well within the
resources of a single Virtex-6 FPGA with 24% Slice Registers,
48% Slice LUTs, 26% BRAMs and 16% DSP48E utilization.

The design was mapped to the ML605 platform, and its
performance was evaluated. The obtained results were com-
pared with MATLAB results to verify correctness. Table IV
shows the latency and throughput of various modules of the
implementation as measured in FPGA clock cycles with an
operating clock frequency of 100 MHz. The latency of the
design is defined as the number of cycles taken from providing
the first input data sample to a module to receiving the last
output data sample from it. The throughput is defined, under
steady state conditions with continuous input supply, as the
number of cycles between the first output of the first input
dataset to the first output of the second dataset. We have given
the per-iteration and total number of cycles for the FFT and
Max Selector modules. For the FFT module, the total latency is

Table III. FPGA Resource utilization, which is shown as a percentage of
total resources available on Xilinx FPGA XC6VLX240T.

Design Regs LUTs BRAMs DSP48Es
Dense-FFT 3% 11% 8% 11%
Max Selector 8% 18% 0% 0%
Voter 10% 14% 3% 2%
Value Compute 1% 2% 14% 2%
SFFT Core 24% 48% 26% 16%

Table IV. Latency and throughput in FPGA clock cycles.

Design Latency Throughput
(cycles) (cycles)

Dense-FFT 1 iteration 13682 6826
Total 61468 54612

Max Selector (Avg) 1 iteration 5888 5888
Total 47104 47104

Voter (Avg) Total 68816 68816
Value Compute Total 33788 33788
SFFT Core (Avg) Total 138646 116024

less than 8× the single iteration’s latency because the pipelined
architecture allows overlapping execution. The performance of
the Max Selector and Voter modules is data-dependent. We
have shown the average case numbers for these modules, and
similarly for the entire SFFT Core design. For the SFFT Core,
the total number of cycles per transform under steady state is
significantly less than the sum of all individual components
due to the pipelined nature of the architecture that allows
overlapping computation between various modules.

We synthesized, placed and routed individual modules as
well as the complete design to obtain processing times for
each component. Table V shows the evaluated processing
times using each module’s maximum operational frequency.
For the complete SFFT core, we run the entire design on a
single clock frequency. The critical path of the design lies
in the Voter module, specifically in the filter modules that
check whether a candidate frequency falls in a high bucket
for the corresponding iteration. This check requires mapping
the candidate to a bucket index, which is used to select a
single value out of the 4096-point vector. We store this vector
in Block RAMs, using a vector size of 64 that balances the
number of cycles to initialize the filter and the size of the
multiplexer that selects the appropriate index out of each 64-
point value. This is a significantly better solution than use of
Slice Registers, as it reduces the design congestion and allows
routing to be completed with desired time constraints.

The steady state throughput of our SFFT Core design is
116,024 clock cycles with a 100 MHz clock, which trans-
lates to 1.16 milliseconds per million-point sparse Fourier
transform. This design is the first million-point FPGA imple-
mentation of the SFFT algorithm. The initial single-threaded
software implementation [4] of the algorithm takes 190 mil-
liseconds to complete a transform with the same parameters,
while executing on an Intel Core i7-2600 CPU. A recent
multi-threaded software implementation [5] takes 100 millisec-
onds for the same problem size, while executing on an Intel
Xeon E5-2660 CPU. Though the CPU-based designs work on
floating-point data, our fixed-point FPGA implementation is
accurate enough for applications under consideration due to

Table V. Processing times in milliseconds accounting for the maximum
operating frequency. The complete design runs on a single frequency.

Design Steady-state Maximum Processing
Throughput frequency Time

(cycles) (MHz) (ms)
Dense-FFT 54612 121.2 0.45
Max Selector 47104 134.7 0.35
Voter 68816 100.1 0.69
Value Compute 33788 121.9 0.28
SFFT Core 116024 100 1.16

the large number of fractional bits used in the input data
type. Our FPGA design is 85× faster than the latter CPU
implementation, while having the benefits of operating in a
single FPGA form factor and power budget as compared to
that of a multi-core CPU.

V. CONCLUSION

In this paper, we have presented the hardware imple-
mentation of a million-point sparse FFT design. The design
has been parameterized and developed in a modular fashion,
enabling its use in a wide variety of sparse FFT applications.
This implementation fits within a single Virtex-6 FPGA and
can complete the processing of a million-point frequency-
sparse input data to generate the indices and values of the
500 most significant frequency coefficients every 1.16 ms.
Our design provides a significant speedup over published
SFFT software implementations. This high-throughput FPGA
implementation of the sparse FFT algorithm allows use of
the million-point Fourier transform in mobile and low-power
devices for applications dealing with frequency-sparse data.

ACKNOWLEDGEMENT
This work was supported by funding from QCRI (Agrmt.

Eff. 6/27/12) and MIT-Lincoln Labs (PO7000170673).

REFERENCES

[1] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical al-
gorithm for sparse fourier transform,” in Proceedings of 23rd Symposium
on Discrete Algorithms, SODA, pp. 1183–1194, 2012.

[2] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse
fourier transform,” in Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC, pp. 563–578, 2012.

[3] O. Abari, E. Hamed, H. Hassanieh, A. Agarwal, D. Katabi, A. Chan-
drakasan, and V. Stojanovic, “A 0.75-million-point fourier-transform chip
for frequency-sparse signals,” in Solid-State Circuits Conference, 2014
IEEE International, pp. 458–459, Feb 2014.

[4] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “SFFT Sparse
Fast Fourier Transform [online].” http://groups.csail.mit.edu/netmit/sFFT/
code.html.

[5] J. Schumacher, “High performance Sparse Fast Fourier Transform,”
Master’s thesis, ETH, Zurich, Switzerland, May 2013.

[6] N. Dave, M. Pellauer, S. Gerding, and Arvind, “802.11a transmitter: a
case study in microarchitectural exploration,” in MEMOCODE, pp. 59–
68, 2006.

[7] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,”
in Proceedings of the 10th International Parallel Processing Symposium,
IPPS ’96, pp. 766–770, 1996.

[8] A. Ioannou and M. Katevenis, “Pipelined heap (priority queue) man-
agement for advanced scheduling in high-speed networks,” Networking,
IEEE/ACM Transactions on, vol. 15, no. 2, pp. 450–461, 2007.

[9] Bluespec, Inc., Waltham, MA, Bluespec SystemVerilog Reference Guide,
September 2013.

