
Accelerating Mobile Applications With Parallel
High-bandwidth and Low-latency Channels

William Sentosa1, Balakrishnan Chandrasekaran2, P. Brighten Godfrey1,3, Haitham Hassanieh1,
Bruce Maggs4, Ankit Singla5

1University of Illinois at Urbana-Champaign, 2VU Amsterdam and MPI-INF, 3VMWare, 4Duke
University, Emerald Innovations, and MIT, 5ETH Zürich

ABSTRACT
Interactive mobile applications like web browsing and gaming are
known to benefit significantly from low latency networking, as
applications communicate with cloud servers and other users’ de-
vices. Emerging mobile channel standards have not met these needs:
general-purpose channels are greatly improving bandwidth but em-
pirically offer little improvement for common latency-sensitive appli-
cations, and ultra-low-latency channels are targeted at only specific
applications with very low bandwidth requirements.

We explore a different direction for wireless channel design: uti-
lizing two channels – one high bandwidth, one low latency – simul-
taneously for general-purpose applications. With a focus on web
browsing, we design fine-grained traffic steering heuristics that can
be implemented in a shim layer of the host network stack, effec-
tively exploiting the high bandwidth and low latency properties of
both channels. In the special case of 5G’s channels, our experiments
show that even though URLLC offers just 0.2% of the bandwidth of
eMBB, the use of both channels in parallel can reduce page load time
by 26% to 59% compared to delivering traffic exclusively on eMBB.
We believe this approach may benefit applications in addition to
web browsing, may offer service providers incentives to deploy low
latency channels, and suggests a direction for the design of future
wireless channels.

CCS CONCEPTS
• Networks → Mobile networks; Network architectures.

KEYWORDS
5G, eMBB, URLLC, Traffic steering, Parallel channels

ACM Reference Format:
William Sentosa1, Balakrishnan Chandrasekaran2, P. Brighten Godfrey1,3,
Haitham Hassanieh1, Bruce Maggs4, Ankit Singla5, 1University of Illinois
at Urbana-Champaign, 2VU Amsterdam and MPI-INF, 3VMWare, 4Duke
University, Emerald Innovations, and MIT, 5ETH Zürich . 2021. Accelerating
Mobile Applications With Parallel High-bandwidth and Low-latency Chan-
nels. In The 22nd International Workshop on Mobile Computing Systems and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448357

Applications (HotMobile ’21), February 24–26, 2021, Virtual, United King-
dom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3446382.
3448357

1 INTRODUCTION
Low latency is critical to interactive applications such as web brows-
ing, virtual and augmented reality, and cloud gaming. For web appli-
cations, even an increase of 100 ms latency can result in as much as
1% revenue loss, as noted by Amazon [11]. The emerging VR/AR
and cloud gaming applications also rely on the low latency link to
deliver a seamless user experience. For instance, VR requires 20ms
or lower latency to avoid any simulator sickness [10].

Current mobile networks, serving general Internet applications
such as web browsing and video streaming, have not yet delivered
consistent low latency performance. This is fundamentally challeng-
ing due to the inherent tradeoff between latency and bandwidth [14].
One approach is to provide two separate channels (or services) –
one optimizing for bandwidth, the other optimizing for latency –
with different types of user applications assigned to them. For exam-
ple, 5G NR follows this pattern with its enhanced mobile broadband
(eMBB) and ultra-reliable and low-latency communication (URLLC)
channels. eMBB, which serves general-purpose Internet use, is heav-
ily focused on delivering gigabit bandwidth. This channel will be
useful for streaming media, but offers little improvement for latency-
sensitive applications, such as web browsing. Experimentally, web
page load time in existing 5G deployments, even in close-to-ideal
circumstances (stationary device and little utilization), is similar to
4G for pages of size < 3 MB and about 19% faster than 4G for sites
> 3 MB [24]; this discrepancy is due to 5G eMBB having 28ms or
larger latency, broadly similar to 4G.

Meanwhile, 5G URLLC promises an exciting capability of very
low latency, in the range of 2 to 10 ms [3], but compromises severely
on bandwidth, making it unsuitable for common mobile applications.
Our experiments emulating web browsing (the most widely used
mobile application [32], and far from the most bandwidth-intensive
application) over URLLC with 2 Mbps bandwidth show web page
load times would be 5.87× higher than with eMBB.

As the latency-bandwidth tradeoff is fundamental, we expect this
separation between channels is likely to persist; 6G, for example, is
also expected to include a low latency channel [38]. But we believe
the availability of both a high bandwidth channel (HBC) and a low
latency channel (LLC) offers an opportunity beyond simple static
assignment of an application to a single channel. Our hypothesis is
that by using high bandwidth and low latency channels in parallel
on mobile devices, significant performance and user experience

https://doi.org/10.1145/3446382.3448357
https://doi.org/10.1145/3446382.3448357
https://doi.org/10.1145/3446382.3448357

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Sentosa, et al.

improvements are possible for latency-sensitive applications. Here,
we explore this hypothesis for the case of web browsing.

Designing a way of mapping an application’s traffic to HBC and
LLC is difficult since we have to use LLC’s bandwidth very selec-
tively. Indeed, the main deployed mechanism to combine multiple
channels, MPTCP [30], assumes two interfaces that are each of
significant bandwidth, with the goal of aggregating that bandwidth
or supporting failover. LLC’s bandwidth, however, is a rounding
error compared to HBC’s. Other works – particularly Socket Intents
[31] and TAPS [27] – exploit multi-access connectivity through
application-level input, which we prefer to avoid to ease deployment
and expand relevance to other applications in the future; therefore
we expect new mechanisms are necessary.

To solve these problems, one approach would be to steer traffic at
the granularity of flows or web objects (e.g., large vs. small). To be
as selective as possible in our use of LLC, we design a fine-grained
packet-level steering scheme. The scheme uses simple heuristics
to identify packets that are more likely to help the application if
they are accelerated, while using a very limited amount of state to
minimize the out-of-order delivery that can result from accelerating
only a subset of packets in a flow. Since this steering scheme does
not solicit extra information from applications, we can present a
virtual network interface to the application, and transparently steer
each packet sent to that interface over HBC or LLC.

To evaluate our design with a concrete scenario, we leverage 5G’s
eMBB and URLLC as our HBC and LLC. We utilize an emulation
environment that includes a typical mobile web browsing scenario: a
client with two network channels emulating characteristics of eMBB
and URLLC radio access networks and the cellular core, as well
as CDN edge, parent, and origin servers. We populate this setup
with landing page snapshots of 53 popular web sites and test various
assumptions about eMBB and URLLC performance. We evaluate
several object and packet steering schemes, and prior approaches
such as MPTCP [1] and ASAP [21]. Our findings conclude that
packet-granularity schemes, which require little to no per-connection
state and no application knowledge, provide the best performance.
For the best steering scheme, even with a modest bandwidth of
2Mbps allocated to URLLC, we can reduce mean page load time
(PLT) by 26% compared to exclusively using eMBB. If eMBB’s
latency fluctuates, increasing from 30ms to 150ms (which is typical
for mmWave channels [15, 19]), combining eMBB and URLLC
decreases mean PLT by 59%.

Finally, we discuss deployment strategies, challenges, and future
opportunities. Although we have focused on web browsing in this
short paper, we believe our basic techniques can apply to a wide
variety of latency-sensitive applications, and open new opportunities
for app developers and cellular providers.

2 BACKGROUND & RELATED WORK
Web browsing traffic: Web browsing traffic is characterized by its
often short and bursty flows, in which latency matters more than
bandwidth. A web page easily contains tens to hundreds of relatively
small-sized objects distributed across multiple servers and domains.
A study across Alexa Top 200 pages found that the median number
of objects in a page is 30, while the median object size is 17 KB [36].
This translates to many HTTP request-and-response interactions

across many short flows. Page load time (PLT) is thus typically
dominated by DNS lookup, connection establishment, and TCP
convergence time – which require little throughput but are highly
dependent on RTT. Increasing TCP throughput beyond ≈ 16 Mbps
offers little improvement in PLT [33].
Channels in 5G: The 5G NR (New Radio) standard provides dif-
ferentiated services to support diverse applications. (1) Enhanced
mobile broadband (eMBB) is an HBC that serves standard mobile
Internet applications. It is considered to be an upgraded 4G mobile
broadband with higher data rates. A key enabling technology is
the use of mmWave bands which offer high bandwidth. A recent
measurement study on commercial mmWave 5G networks in the
US shows TCP throughput of up to 2 Gbps for download and 60
Mbps for upload, with a mean RTT of 28 ms measured between the
client and the first-hop edge server right outside the cellular network
core [24].1 (2) Ultra-reliable low-latency communication (URLLC),
as an LLC, is intended for mission-critical and specialized latency-
sensitive applications such as self-driving cars, factory automation,
and remote surgery. It focuses on providing highly reliable, very
low latency communication at the cost of limited throughput. While
URLLC is yet to be deployed, the standard is finalized and specifies
a 0.5 ms air latency (1 ms RTT) between the client and the Radio
Access Network (RAN) with 99.999% reliability for small pack-
ets (e.g. 32 to 250 bytes) [6]. It also specifies a target end-to-end
latency (from a client to a destination typically right outside the
cellular network core) between 2 to 10 ms with throughput in the
range of 4 Mbps [3]. URLLC is expected to guarantee such perfor-
mance through dedicated network resources achieved via network
slicing [3].
Leveraging multiple connections: MPTCP [30] provides an end-
to-end transport protocol that supports multiple interfaces. Socket
Intents [31] and Intentional networking [20] both expose custom
API to application and offer OS-level support for managing multiple
interfaces. Both of them regulate application traffic based on the
application-specific information. These efforts are complimentary
to ours since we focus on mapping the application traffic to HBC
and LLC. Perhaps, works most relevant to ours are IANS [12] and
ASAP [21]. IANS leverages Socket Intents to improve web page
load. Unlike our approach (i.e., packet steering schemes), however,
they require application-specific information (i.e., object size) to
determine which interface to use and they work at the object level.
We compare ASAP with our scheme in §4.2, and found that our
scheme performs better due to its finer-grained decision.

3 TRAFFIC SPLITTING SCHEMES
In general, a scheme to split traffic between HBC and LLC needs
to judiciously steer only a small portion of traffic through LLC to
avoid overloading it (which would congest queues, negating latency
benefits); and that small portion should yield the most benefit to
application-level performance.

We investigate heuristics for web browsing in object-level and
packet-level which employ different tradeoffs. Object-level splitting

1These measurements, however, were performed in conditions favorable to mmWave
with line of sight, no mobility, and few clients. eMBB latency is expected to be higher
as the number of users increases and as users move, especially for mmWave since the
user or other obstacles can easily block the beam, leading to unreliable and inconsistent
performance [2, 23, 24].

Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

Client Server Client Server
Req. 1 - [PSH, ACK] Size 175

Resp. 1 - [ACKs] Seq: 1,2 Size 1500

[ACKs] ACK 1,2 Size 56

Resp. 1 - [ACKs] Seq: 3,4,5 Size 1500

Resp. 1 - [PSH, ACK] Seq: 6 Size 500

Req. 2 - [PSH, ACK] Size 180

1. Client sends an HTTP GET request to the server. The size
varies by its header and content, but it is typically small
enough to fit into one packet.

2. Server sends the HTTP response data in multiple packets
since the data size is more than MTU (1500 bytes). For the
purpose of illustration, we set init_cwnd=2, and thus it can
only send two packets. It needs to wait for an ACK from the
client before sending more.

3. Client acknowledges data packets from Server.
4. Server sends another stream of packets, doubling from the

first stream (no 2). The response data ends, and the last
packet is not an MTU-sized packet.

5. Client reuses the connection to send another HTTP request.
6. The second response fits into a single packet. The server also

sends FIN packet to tear down the connection.(a) HTTP connection setup (b) HTTP request and response traffic

[ACKs] ACK 3,4,5,6 Size 56

Resp. 2 - [PSH, ACK, FIN] Size 800

[FIN, ACK] Size 56

Sent through LLC Sent through HBC

1

2

3

4

5

6

TC
P

ha
nd

sh
ak

e

Client hello - [PSH, ACK] Size 294

Server certificate - [ACK] Size 1500

TL
S

ha
nd

sh
ak

e

Server certificate - [PSH, ACK] Size 1025

Client key - [PSH, ACK] Size 131Change cipher spec - [PSH, ACK] Size 107

New session ticket - [ACK] Size 226

Req. 1 - [PSH, ACK] Size 175

[SYN] Size 76

[ACK] Size 56

[SYN, ACK] Size 64

Figure 1: HTTP traffic delivery on TCP. It also shows per-packet mapping done by the packet steering scheme (pkt-state).

may benefit from application-level knowledge about web objects,
but requires application input. Packet-level splitting can benefit from
finer-grained decisions, but needs to deal with challenges of out-of-
order delivery (OOD) if packets within a flow are sent on different
channels. We consider several natural schemes in each class, and
design a new packet-level scheme that minimizes OOD.
Object-level splitting: A web page is comprised of many objects
that vary in size. Inspired by prior works [12, 34], the simplest
splitting heuristic is to request objects smaller than some threshold
over LLC, as their load times are dominated by latency. All other
objects use HBC. Note that this approach requires the application
to specify object size, or to make the splitting choice itself. Our
evaluation (with URLLC and eMBB) tests this obj-size scheme
using two different thresholds of 3 KB and 6 KB. (The reasoning is
that URLLC supports a maximum rate of ≈250 bytes per ms, and
its RTT difference with eMBB is ≈25ms. Therefore, objects of size
>6.25 KB are likely delivered faster on eMBB.)

Another approach is to leverage application-level priority of web
objects. Web pages have complex dependency structures, and certain
objects can be on the critical path for web page loading. We evaluated
a scheme (obj-priority) by utilizing Chrome priority assignment [17]
to only fetch the highest priority object via LLC. Note that this
scheme may not be a perfect fit either, because high priority objects
could be large (HTML pages, which tend to have the highest priority,
can be much larger than 6.25 KB) and will load faster via HBC.
Packet-level splitting: A simple packet-level heuristic is to send
all client-to-server traffic over LLC and all server-to-client traffic
over HBC; we call this scheme pkt-uplink. The intuition is that client
requests are generally small. This scheme might not perform well,
however, if the client sends a large amount of data to the server (e.g.,
using HTTP POST), and misses acceleration opportunities from
server to client.

To devise a better heuristic, we investigate the traffic that arises
when loading a typical web page. Before loading a page, the client
exchanges small UDP packets (<250 bytes) with the nameserver to
perform DNS lookup; delivering them on URLLC can accelerate the
lookup process. The client continues by exchanging TCP packets
with the web server as shown in Figure 1. Packets in the TCP flow can

be categorized as control packets and data packets. Control packets
are packets only intended to manage TCP operations (e.g., SYN
and ACK packets), and do not carry any payload. These packets are
tiny, and accelerating them will benefit the entire flow. For instance,
accelerating SYN packets allows faster connection establishment
while accelerating the client’s ACK packets reduces flow RTT, which
is crucial because RTT largely determines web object download
times for small objects. Thus, we include a scheme (pkt-control) that
only offloads control packets to LLC in our evaluation.

Data packets are packets that carry a payload. Mapping data
packets to LLC can quickly consume the bandwidth, yet each packet
does not provide equal benefit from acceleration. In Figure 1b, accel-
erating a single packet in the second HTTP response will complete
the response, while accelerating a mere single in to the first HTTP
response will cause head of line blocking. We observed that when a
data cannot fit into one packet, it will be fragmented into multiple
packets, with most of them being MTU-sized (see HTTP response
1 in Figure 1b). Thus, MTU-sized packets are likely belongs to a
larger transfer, and thus are not worth accelerating.

However, not all non-MTU-sized packets are worth accelerating.
For instance, the last (tail) packet of the HTTP response (Seq 6 in
Figure 1b) is most likely less than MTU, and accelerating that will
result in out-of-order delivery (OOD) that may confuse application.
We can identify tail data packet with a simple per-connection state
to remember its one preceding packet; if its preceding packet is
MTU-sized, this packet is more likely to be the tail packet.

Guided by all these observations, we devise a simple packet
steering scheme (pkt-state) that can determine whether a packet
should be sent through LLC. It stores state for each connection
to remember the size of the last packet delivered, and uses only
packet size to make decisions. Figure 1 shows the end-result of
packet-level mapping of the pkt-state for HTTP traffic. Leveraging
this scheme, all non-MTU-sized packets except the tail data packets
will be delivered through LLC, including DNS packets, control
packets, and small data packets. Even though we were inspired by
the HTTP traffic pattern in designing this scheme, we believe that
this approach can be beneficial to other application traffic as well
since our approach is application-agnostic.

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Sentosa, et al.

Algorithm 1: PKT-State
Result: Send a packet to either HBC or LLC
if size(pkt) < MTU and size(prev_pkt) < MTU then

send(pkt, LLC); /* control or small data pkt */
else

send(pkt, HBC); /* tail or MTU-sized pkt */
end

Client
browser CDN edge

server
CDN parent

server
Origin server

eMBB
30 ms RTT

U: 60 / D: 1500

URLLC
5 ms RTT
U / D: 2

10 ms
RTT

40 ms
RTT

Internet
RAN + Core

Network

Figure 2: Baseline emulation setup

4 EVALUATION
We evaluate performance with emulated 5G eMBB and URLLC,
and with parameters representing possible future channels.

4.1 Emulation and experimental setup
Our emulation setup (Figure 2) reflects the dependence of web
applications on content delivery networks (CDNs). CDNs comprise
a hierarchy of caches [9]. Here, the client’s request first reaches an
edge server. In case of a cache miss it is forwarded to a parent server,
and in case of a second cache miss it is forwarded to the origin server
storing the content. Request latency is therefore variable.

The client has two parallel paths (along eMBB and URLLC)
to the edge server. The bandwidth and RTT of the eMBB path
(1500Mbps + 30ms) is based on recent 5G measurements [24], and
for URLLC (2Mbps + 5ms) on its sample use cases [3]. This base
eMBB configuration is based on perfect line of sight with no mobility.
For the CDN latency, we assume that both the edge and parent
servers are located in the US midwest while the origin server is
located on the US west coast. Based on publicly available network
latency information [5], we use 10ms RTT from edge to parent and
40ms RTT from parent to origin.

Our experiments use a machine running Ubuntu 16.04 LTS with
32 GB RAM, 512 GB SSD, and an Intel Core i7-9700 CPU. The web
server runs on Apache 2.4.18, while the client uses Chromium v81.
The experiments use HTTP 1.1, leaving an evaluation of HTTP/2
and QUIC to future work.

We use Mahimahi [25] to record and replay web pages. We mod-
ified Mahimahi to include the CDN hierarchy, our packet steering
techniques in Mahimahi’s packet scheduling modules, and an HTTP
proxy to enable object-level steering.

To realistically emulate cache misses and hits in the CDN, our
evaluation uses web pages for which we can get this information
from HTTP headers. HTTP pragma headers, used by CDNs for
debugging, can be used to glean this information [29]. We started
with a random sample of top-ranked Alexa pages and found 53 that
provide the pragma headers. We recorded and locally replayed these
sites’ landing pages, whose mean size is 2.13MB and whose 95th

percentile size is 6.13MB. We replayed each page load five times
and reported its median PLT (based on the onLoad event [26]). We
used cold DNS and browser caches for all experiments.

−30 −20 −10 0 10 20 30 40 50
PLT improvement over the baseline [ALL-EMBB] (%)

PKT-State
ASAP

PKT-Control
PKT-Uplink

OBJ-Size-6KB
OBJ-Size-3KB

OBJ-Priority
MPTCP Mean

 Median

Figure 3: Comparisons between object-level and packet-level
steering. The baseline has a mean PLT of 1635ms.

4.2 Evaluation of multiple schemes
We evaluated three object-level and three packet-level steering schemes
(§3), and compared them with a baseline where the client only uti-
lized eMBB (all-embb), and with Multipath TCP (MPTCP) [1] and
ASAP [21]. MPTCP spreads traffic across multiple interfaces; we
evaluated the default Linux kernel implementation. ASAP was de-
signed to accelerate PLT in satellite networks by offloading some
traffic to 3G/4G (which had lower latency but higher cost per byte
than satellites, in [21]). Figure 3 and Table 1 summarize the results.

Object-level splitting performs poorly. Obj-Priority is often worse
than the baseline since it sends high priority objects to the low-
latency channel, but these can be large. The size-based heuristics do
not improve much compared to the baseline – only about 25% of web
pages have > 10% lower PLT – and they are sometimes worse. This
is because many small objects (like icons) do not affect PLT much.
Some pages perform slightly worse because of resource contention
on URLLC when fetching multiple small objects in parallel.

Packet-level splitting, in contrast, performs consistently well,
especially pkt-state, which has 1243ms mean PLT (a 26% improve-
ment) while only offloading 12.6% of bytes to URLLC. Interestingly,
pkt-control improves mean PLT by 18.5% by only offloading con-
trol packets comprising 3.1% of bytes. These improvements stem
from the finer granularity of splitting, such that every web object
experiences faster download, ultimately improving PLT for all pages.
Unsurprisingly, the smaller web pages tend to improve more, as their
PLT is more dominated by latency than bandwidth.
Understanding pkt-state gains: To understand the network-related
gain of pkt-state, we use curl to download the HTML document of
amazon.com within our emulation setup. This object is cached at
the edge, so no CDN delay is incurred. Table 2 shows that pkt-state
performs better than not only all-embb, but also all-urllc. This is
because pkt-state offloads (1) DNS packets that reduce DNS lookup
time, (2) control packets that reduce connection (SYN packets) and
object transfer time (Client’s ACK packets), and (3) small data
packets that accelerate small data transfer such as TLS client key
transfer or HTTP request data. Meanwhile, it benefits from the higher
bandwidth than all-urllc which contributes to a better transfer time.
Comparison with existing works: MPTCP generally fails to per-
form better than always using a single eMBB path. Vanilla MPTCP
is known to perform sub-optimally under heterogeneous paths due
to head-of-line blocking [13] and its policy to lean towards load
balancing among multiple paths. A superior MPTCP scheduler may

Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

0 2000 4000 6000 8000
Mean load time (ms)

All-eMBB

ASAP

PKT-State LP
P1
P2
P3
P4

Figure 4: Mean load time across different pages: the landing
page (LP) and four internal pages (P1, P2, P3, P4)

Steering scheme
Mean bytes

per page
% bytes Avg rate (Mbps)

Mean 90th Mean 90th

MPTCP [1] 476.3 KB 22.1% 41.6%
U: 0.15
D: 0.68

U: 0.24
D: 1.02

OBJ-Priority 259.6 KB 12.8% 29%
U: 0.10
D: 1.13

U: 0.14
D: 1.75

OBJ-Size-3KB 118.1 KB 5.5% 11%
U: 0.21
D: 0.45

U: 0.42
D: 0.82

OBJ-Size-6KB 242.8 KB 10.7% 20.3%
U: 0.28
D: 0.73

U: 0.46
D: 1.32

PKT-Uplink 186.7 KB 8.6% 13.5%
U: 0.38

D: 0
U: 0.66

D: 0

PKT-Control 62.8 KB 3.1% 4.6%
U: 0.1
D: 0.04

U: 0.17
D: 0.07

ASAP [21] 257 KB 12.3% 20.3%
U: 0.85
D: 0.50

U: 1.26
D: 0.77

PKT-State 260.5 KB 12.6% 20.4%
U: 0.87
D: 0.52

U: 1.28
D: 0.81

Table 1: Traffic sent over URLLC by each scheme, in bytes per
page, percent of total bytes of page load, and mean upload (U)
and download (D) rate.

achieve better results, and could provide a deployment path for parts
of our work (§5).

ASAP performs similar to pkt-state with 23% mean improvement.
ASAP splits packets based on its corresponding HTTP phase; it
accelerates DNS, connection (TLS + SSL) handshake, and HTTP
request traffic, while leaving HTTP responses for eMBB. This as-
sumes that HTTP requests are small, which is mostly true when a
browser loads a single landing page, but does not hold in general. A
simple example is when a user uploads a photo, but we also found
that ASAP encounters problems as the user browses deeper into the
site.

Specifically, we performed a smaller-scale experiment to simu-
late an interactive browser session. We picked 21 web sites from
our corpus that have “hamburger” menu buttons, and for each site
we performed an automated click through four different menus in
the same browser session. ASAP performs worse as subsequent
pages are loaded (Figure 4). This happens because as the user clicks
through internal links, more data is pushed to the server, resulting
in larger HTTP request traffic, as shown by the increased request
size on the 99th percentile – 1.92 KB per page for landing pages
compared to 2.9 KB when visiting four additional pages.

In summary, ASAP has several drawbacks: slightly worse mean
and variance PLT for the landing page, noticeably worse PLT for
subsequent pages, and is more tied to HTTP.

Perf. metric All-eMBB All-URLLC PKT-State

DNS lookup 60ms 12ms 12ms
TCP connect 32ms 6ms 6ms
TLS connect 180ms 94ms 92ms

Object transfer 92ms 427ms 54ms
Total loading time 399ms 579ms 183ms

Avg. download rate 2.2Mbps 1.5Mbps 4.8Mbps

Table 2: A deeper look at the pkt-state performance when fetch-
ing the landing page of amazon.com (110 KB).

30 50 75 100 125 150
eMBB RTT (ms)

0

2

4

6

PL
T

(s
)

(a) Variable eMBB RTTs
ALL-eMBB
PKT-STATE

2 5 10 15 20
URLLC RTT (ms)

0

1

2

3
(b) Variable URLLC RTTs

ALL-eMBB
PKT-STATE

Mean
95th

1 1.5 2 4 6 8 10
URLLC Bandwidth (Mbps)

0

1

2

3

4

PL
T

(s
)

(c) Variable URLLC bandwidth
ALL-eMBB
PKT-State
ALL-URLLC

eMBB RTT 30ms
eMBB RTT 50ms

Figure 5: Varying eMBB and URLLC network conditions, con-
ducted using the baseline setup (Figure 2) with a single varying
parameter, except (c) where we change two parameters.

4.3 Varying network performance
We evaluated the best heuristic (pkt-state) under different LLC and
HBC network characteristics.
Varying eMBB network RTTs: RTT inflation is common in mo-
bile networks due to bufferbloat [18, 22] and physical properties,
especially under movement. We evaluated inflated RTT on the HBC,
and found pkt-state provides even larger improvements (Figure 5a).
pkt-state has 59% (≈ 2.4×) lower PLT than all-embb when the
eMBB RTT is 150ms, which is possible [24] when the channel is
heavily utilized. Since pkt-state uses eMBB primarily for bandwidth-
intensive traffic, it is extremely robust to worsened RTT on the main
channel.
Varying URLLC network RTTs: Although URLLC is expected
to deliver consistent low latency, we evaluate latency inflation on
URLLC to reflect scenarios where web traffic is de-prioritized in
favor of critical traffic. pkt-state is still superior with URLLC latency
increasing up to 20 ms and eMBB held at 30 ms (Figure 5b). To
prevent worse performance, the client could periodically probe the
LLC and if its latency is too high, fall back to using the HBC.
Varying URLLC bandwidth: pkt-state requires little bandwidth:
its PLT flattens for more than 2Mbps (Figure 5c). This is expected
since its average data rate is only 0.87Mbps up and 0.52Mbps down
(Table 1). The figure also shows we cannot entirely rely on URLLC
(all-urllc) as it needs more than 10Mbps to approach the baseline.

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Sentosa, et al.

5 DEPLOYMENT IN 5G
We discuss the packet steering deployment in 5G eMBB and URLLC
and its challenges. They are all parts of the future work and require
further evaluation; however, we outline our expectations.
Packet steering implementation: In the deployment, two specific
changes are required: packet steering in the user device operating
system, and in an existing proxy in the network provider. The steer-
ing should be performed in the network-layer, and hence we do not
expect to modify both eMBB and URLLC link- and physical-layer
design. On the client-side, the operating system needs to steer pack-
ets over eMBB and URLLC interfaces. One approach is to present
a virtual interface that ties both interfaces and steers packets via
the custom bridging [37]. Applications wishing to utilize parallel
channels may use the provided virtual interface. Another way is
to leverage MPTCP and introduce a new scheduling module. The
former approach may be preferred because MTPCP also requires
MPTCP-compliant web servers, and it cannot steer non-MPTCP
traffic. We do not need any or minimal (such as to use the virtual
interface) application-level change as our approach is transparent to
the application.

Since traffic steering should be performed in both directions,
network providers need to steer packets originating from the Internet
and merge URLLC and eMBB traffic from the client. This change
should be minimal since they can directly leverage an existing proxy
in the core network, such as the packet data network gateway (P-
GW). This approach ensures transparency of the packet steering to
the server.
URLLC scalability: The number of users that can send general traf-
fic to URLLC is an important matter which deserves to be evaluated
quantitatively in the future. At the time of the writing, URLLC is
not yet deployed in public. However, based on the white paper [4],
URLLC is targeted to support a relatively high connection density
with modest per-user bandwidth. For instance, one of the URLLC
use cases (discrete automation) requires a user-experienced data
rate of 10Mbps, traffic density of 1 Tbps/km2, connection density
of 100.000/km2, and max end-to-end latency of 10ms. We expect
URLLC to reserve 2Mbps maximum bandwidth per user for gen-
eral application traffic, which is still reasonable based on others’
proposed use cases for URLLC, even in a dense urban area.
Disrupting URLLC native traffic: URLLC is primarily built to
serve latency-sensitive critical applications. To ensure we do not
compromise the performance of these applications, we only use a
small amount of the URLLC capacity. In particular, the 90th per-
centile average data rate is only 1.28Mbps (Table 1). Moreover, the
network operator can limit the per-user bandwidth and even choose
to deprioritize non-critical packets as our approach does not require
99.999% reliability and is resilient to the slight increase in URLLC
latency (§4.3).
Resource contention among applications: Multiple applications
inside a user equipment may compete to use URLLC. We can regu-
late them using prioritization. One simple approach is to prioritize
applications running in the foreground since mobile phone users are
typically single-tasking.
Incentives for operators: While URLLC targets critical applica-
tions, it is up to the network providers to open URLLC for gen-
eral mobile applications like web browsing. This is possible as 5G

chipsets are typically designed to support multiple bands including
the sub-6GHz bands for URLLC [3]. Expanding the applications
of URLLC can encourage providers to foster a faster and broader
deployment of URLLC as it brings a smoother experience to their
major customers – mobile phone users; especially as the current
market for URLLC applications like self-driving cars and remote
surgery is still in its infancy.

6 RESEARCH OPPORTUNITIES
The use of LLC and HBC opens up new research opportunities.
Other applications: In addition to web browsing, our approach
can benefit many mobile applications which typically employ HTTP
but are different in terms of page contents. Their traffic is generally
smaller since it is characterized by many JSON requests [35] and
hence, it should benefit more from the improved latency compared
to bandwidth. LLC and HBC combination can also properly support
applications from different domains that require high-bandwidth
and low-latency; something that cannot be satisfied by utilizing
a mere single channel. For instance, cloud gaming, which allows
users to play games from remote servers, requires high bandwidth to
stream the content and low latency to remain responsive to user input.
Since these applications can be vastly different than web browsing, a
superior steering scheme may exist. We plan to analyze them further
to determine an effective way of leveraging LLC and HBC.
Beyond mobile networks: Our insights may apply to other LLC
and HBC combinations with analogous bandwidth and latency trade-
offs. Examples include quality of service (QoS) differentiation pro-
viding separate latency- and bandwidth-optimized services [7, 28];
and routing traffic among multiple ISPs where one is more expensive
but provides better latency, as may happen with very low Earth orbit
satellite-based [16] or specialty [8] ISPs. To achieve the optimum
cost to performance ratio, we can route only the latency-sensitive
traffic to the low-latency ISP.
Future wireless design: The 5G URLLC is only equipped with
limited user bandwidth, and hence it is not suitable to serve gen-
eral application traffic. The bandwidth is severely compromised
because it needs to provide both low latency and very high reliability
(99.999%). However, general applications do not need the almost-
perfect reliability that URLLC guarantees. Future wireless networks
(such as 6G) may reconsider this trade-off and provide a low-latency
channel with somewhat greater bandwidth and somewhat lower
reliability.

7 CONCLUSION
We present an idea to utilize high-bandwidth and low-latency chan-
nels in parallel to improve mobile applications. In this early work,
we show the way web browsing performance can be improved by
carefully steering traffic over 5G eMBB and URLLC and exploiting
the channels’ massive bandwidth and low latency properties.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Wenjun Hu for
their comments. This work was supported by the National Science
Foundation under Grant No. 1763841.

Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

REFERENCES
[1] 2018. Multipath TCP in the Linux Kernel v0.94. http://www.multipath-tcp.org.

[Last accessed on June 16, 2020].
[2] 2018. MWC: Are Your 5 Fingers Blocking Your 5G? https://www.eetimes.com/

mwc-are-your-5-fingers-blocking-your-5g/. [Last accessed on June 24, 2020.
[3] 2019. 3GPP TR 38.824 Release 16. https://www.3gpp.org/release-16. [Last

accessed on June 16, 2020].
[4] 2019. 3GPP TS 22.261 version 15.7.0 Release 15. https://www.etsi.org/deliver/

etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf. [Last
accessed on January 20, 2021].

[5] 2020. AS7029 Windstream Communication Network Latency. https://ipnetwork.
windstream.net. [Last accessed on June 8, 2020].

[6] 3rd Generation Partnership Project. 2017. Study on Scenarios and Requirements
for Next Generation Access Technologies. Technical Report.

[7] Jozef Babiarz, Kwok Chan, and Fred Baker. 2006. Configuration guidelines for
DiffServ service classes. Network Working Group (2006).

[8] Debopam Bhattacherjee, Sangeetha Abdu Jyothi, Ilker Nadi Bozkurt, Muhammad
Tirmazi, Waqar Aqeel, Anthony Aguirre, Balakrishnan Chandrasekaran, P Godfrey,
Gregory P Laughlin, Bruce M Maggs, et al. 2018. cISP: A Speed-of-Light Internet
Service Provider. arXiv preprint arXiv:1809.10897 (2018).

[9] Anawat Chankhunthod, Peter B Danzig, Chuck Neerdaels, Michael F Schwartz,
and Kurt J Worrell. 1996. A Hierarchical Internet Object Cache.. In USENIX
Annual Technical Conference. 153–164.

[10] Eduardo Cuervo. 2017. Beyond reality: Head-mounted displays for mobile systems
researchers. GetMobile: Mobile Computing and Communications 21, 2 (2017),
9–15.

[11] Yoav Einav. 2019. Amazon Found Every 100ms of Latency Cost them 1% in Sales.
Retrieved May 24, 2020 from https://www.gigaspaces.com/blog/amazon-found-
every-100ms-of-latency-cost-them-1-in-sales/

[12] Theresa Enghardt, Philipp S Tiesel, Thomas Zinner, and Anja Feldmann. 2019.
Informed Access Network Selection: The Benefits of Socket Intents for Web
Performance. In 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, 1–9.

[13] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana Boreli. 2016. BLEST:
Blocking estimation-based MPTCP scheduler for heterogeneous networks. In
2016 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE,
431–439.

[14] A El Gamal, James Mammen, Balaji Prabhakar, and Devavrat Shah. 2004.
Throughput-delay trade-off in wireless networks. In IEEE INFOCOM 2004, Vol. 1.
IEEE.

[15] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi. 2019. A Tutorial on
Beam Management for 3GPP NR at mmWave Frequencies. IEEE Communications
Surveys Tutorials 21, 1 (2019), 173–196.

[16] Giacomo Giuliari, Tobias Klenze, Markus Legner, David Basin, Adrian Perrig,
and Ankit Singla. 2020. Internet backbones in space. ACM SIGCOMM Computer
Communication Review 50, 1 (2020), 25–37.

[17] Sergio Gomes. 2020. Resource Prioritization – Getting the Browser to Help
You. https://developers.google.com/web/fundamentals/performance/resource-
prioritization. [Last accessed on June 12, 2020].

[18] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata
Sen. 2016. Understanding on-device bufferbloat for cellular upload. In Proceed-
ings of the 2016 Internet Measurement Conference. 303–317.

[19] Haitham Hassanieh, Omid Abari, Michael Rodriguez, Mohammed Abdelghany,
Dina Katabi, and Piotr Indyk. 2018. Fast Millimeter Wave Beam Alignment. In
SIGCOMM’18.

[20] Brett D Higgins, Azarias Reda, Timur Alperovich, Jason Flinn, Thomas J Giuli,
Brian Noble, and David Watson. 2010. Intentional networking: opportunistic
exploitation of mobile network diversity. In Proceedings of the sixteenth annual
international conference on Mobile computing and networking. 73–84.

[21] Se Gi Hong and Chi-Jiun Su. 2015. ASAP: fast, controllable, and deployable
multiple networking system for satellite networks. In 2015 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 1–7.

[22] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling
bufferbloat in 3G/4G networks. In Proceedings of the 2012 Internet Measurement
Conference. 329–342.

[23] Adrian Loch, Irene Tejado, and Joerg Widmer. 2016. Potholes Ahead: Impact of
Transient Link Blockage on Beam Steering in Practical mm-Wave Systems. In
The 22nd European Wireless Conference.

[24] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proceedings of The Web Conference 2020. 894–905.

[25] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate record-and-
replay for HTTP. In 2015 USENIX Annual Technical Conference (USENIX ATC
15). 417–429.

[26] Jan Odvarko. 2007. HAR 1.2 Spec. Retrieved June 8, 2020 from http://www.
softwareishard.com/blog/har-12-spec/

[27] Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry Fairhurst, Colin Perkins,
Philipp S Tiesel, and Christopher A Wood. 2018. An architecture for transport
services. Internet-Draft draft-ietf-taps-arch-00, IETF (2018).

[28] Maxim Podlesny and Sergey Gorinsky. 2008. RD network services: differentiation
through performance incentives. In Proceedings of the ACM SIGCOMM 2008
conference on Data communication. 255–266.

[29] Shankaranarayanan Puzhavakath Narayanan, Yun Seong Nam, Ashiwan Sivaku-
mar, Balakrishnan Chandrasekaran, Bruce Maggs, and Sanjay Rao. 2016. Reduc-
ing latency through page-aware management of web objects by content delivery
networks. ACM SIGMETRICS Performance Evaluation Review 44, 1 (2016),
89–100.

[30] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard can
it be? designing and implementing a deployable multipath TCP. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). 399–
412.

[31] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. 2013.
Socket intents: Leveraging application awareness for multi-access connectivity. In
Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies. 295–300.

[32] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. 2012.
Characterizing geospatial dynamics of application usage in a 3G cellular data
network. In 2012 Proceedings IEEE INFOCOM. IEEE, 1341–1349.

[33] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, and Nazanin Magharei.
2013. Measuring and mitigating web performance bottlenecks in broadband
access networks. In Proceedings of the 2013 conference on Internet measurement
conference. 213–226.

[34] Philipp S Tiesel, Theresa Enghardt, Mirko Palmer, and Anja Feldmann. 2018.
Socket intents: Os support for using multiple access networks and its benefits for
web browsing. arXiv preprint arXiv:1804.08484 (2018).

[35] Santiago Vargas, Utkarsh Goel, Moritz Steiner, and Aruna Balasubramanian. 2019.
Characterizing JSON Traffic Patterns on a CDN. In Proceedings of the Internet
Measurement Conference. 195–201.

[36] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). 387–399.

[37] Kok-Kiong Yap, Te-Yuan Huang, Yiannis Yiakoumis, Sandeep Chinchali, Nick
McKeown, and Sachin Katti. 2013. Scheduling packets over multiple interfaces
while respecting user preferences. In Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies. 109–120.

[38] Baiqing Zong, Chen Fan, Xiyu Wang, Xiangyang Duan, Baojie Wang, and Jianwei
Wang. 2019. 6G technologies: Key drivers, core requirements, system architec-
tures, and enabling technologies. IEEE Vehicular Technology Magazine 14, 3
(2019), 18–27.

http://www.multipath-tcp.org
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.3gpp.org/release-16
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://ipnetwork.windstream.net
https://ipnetwork.windstream.net
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/

	Abstract
	1 Introduction
	2 Background & related work
	3 Traffic splitting schemes
	4 Evaluation
	4.1 Emulation and experimental setup
	4.2 Evaluation of multiple schemes
	4.3 Varying network performance

	5 Deployment in 5G
	6 Research opportunities
	7 Conclusion
	Acknowledgments
	References

