
Accelerating Mobile Applications With Parallel
High-bandwidth and Low-latency Channels

William Sentosa1, Balakrishnan Chandrasekaran2, P. Brighten Godfrey1,3, Haitham Hassanieh1,
Bruce Maggs4, Ankit Singla5

1University of Illinois at Urbana-Champaign, 2VU Amsterdam and MPI-INF, 3VMWare, 4Duke
University, Emerald Innovations, and MIT, 5ETH Zürich

ABSTRACT
Interactive mobile applications like web browsing and gaming are
known to benefit significantly from low latency networking, as
applications communicate with cloud servers and other users’ de-
vices. Emerging mobile channel standards have not met these needs:
general-purpose channels are greatly improving bandwidth but em-
pirically offer little improvement for common latency-sensitive appli-
cations, and ultra-low-latency channels are targeted at only specific
applications with very low bandwidth requirements.

We explore a different direction for wireless channel design: uti-
lizing two channels – one high bandwidth, one low latency – simul-
taneously for general-purpose applications. With a focus on web
browsing, we design fine-grained traffic steering heuristics that can
be implemented in a shim layer of the host network stack, effec-
tively exploiting the high bandwidth and low latency properties of
both channels. In the special case of 5G’s channels, our experiments
show that even though URLLC offers just 0.2% of the bandwidth of
eMBB, the use of both channels in parallel can reduce page load time
by 26% to 59% compared to delivering traffic exclusively on eMBB.
We believe this approach may benefit applications in addition to
web browsing, may offer service providers incentives to deploy low
latency channels, and suggests a direction for the design of future
wireless channels.

CCS CONCEPTS
• Networks → Mobile networks; Network architectures.

KEYWORDS
5G, eMBB, URLLC, Traffic steering, Parallel channels

ACM Reference Format:
William Sentosa1, Balakrishnan Chandrasekaran2, P. Brighten Godfrey1,3,
Haitham Hassanieh1, Bruce Maggs4, Ankit Singla5, 1University of Illinois
at Urbana-Champaign, 2VU Amsterdam and MPI-INF, 3VMWare, 4Duke
University, Emerald Innovations, and MIT, 5ETH Zürich . 2021. Accelerating
Mobile Applications With Parallel High-bandwidth and Low-latency Chan-
nels. In The 22nd International Workshop on Mobile Computing Systems and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448357

Applications (HotMobile ’21), February 24–26, 2021, Virtual, United King-
dom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3446382.
3448357

1 INTRODUCTION
Low latency is critical to interactive applications such as web brows-
ing, virtual and augmented reality, and cloud gaming. For web appli-
cations, even an increase of 100 ms latency can result in as much as
1% revenue loss, as noted by Amazon [11]. The emerging VR/AR
and cloud gaming applications also rely on the low latency link to
deliver a seamless user experience. For instance, VR requires 20ms
or lower latency to avoid any simulator sickness [10].

Current mobile networks, serving general Internet applications
such as web browsing and video streaming, have not yet delivered
consistent low latency performance. This is fundamentally challeng-
ing due to the inherent tradeoff between latency and bandwidth [14].
One approach is to provide two separate channels (or services) –
one optimizing for bandwidth, the other optimizing for latency –
with different types of user applications assigned to them. For exam-
ple, 5G NR follows this pattern with its enhanced mobile broadband
(eMBB) and ultra-reliable and low-latency communication (URLLC)
channels. eMBB, which serves general-purpose Internet use, is heav-
ily focused on delivering gigabit bandwidth. This channel will be
useful for streaming media, but offers little improvement for latency-
sensitive applications, such as web browsing. Experimentally, web
page load time in existing 5G deployments, even in close-to-ideal
circumstances (stationary device and little utilization), is similar to
4G for pages of size < 3 MB and about 19% faster than 4G for sites
> 3 MB [24]; this discrepancy is due to 5G eMBB having 28ms or
larger latency, broadly similar to 4G.

Meanwhile, 5G URLLC promises an exciting capability of very
low latency, in the range of 2 to 10 ms [3], but compromises severely
on bandwidth, making it unsuitable for common mobile applications.
Our experiments emulating web browsing (the most widely used
mobile application [32], and far from the most bandwidth-intensive
application) over URLLC with 2 Mbps bandwidth show web page
load times would be 5.87× higher than with eMBB.

As the latency-bandwidth tradeoff is fundamental, we expect this
separation between channels is likely to persist; 6G, for example, is
also expected to include a low latency channel [38]. But we believe
the availability of both a high bandwidth channel (HBC) and a low
latency channel (LLC) offers an opportunity beyond simple static
assignment of an application to a single channel. Our hypothesis is
that by using high bandwidth and low latency channels in parallel
on mobile devices, significant performance and user experience

https://doi.org/10.1145/3446382.3448357
https://doi.org/10.1145/3446382.3448357
https://doi.org/10.1145/3446382.3448357

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Sentosa, et al.

improvements are possible for latency-sensitive applications. Here,
we explore this hypothesis for the case of web browsing.

Designing a way of mapping an application’s traffic to HBC and
LLC is difficult since we have to use LLC’s bandwidth very selec-
tively. Indeed, the main deployed mechanism to combine multiple
channels, MPTCP [30], assumes two interfaces that are each of
significant bandwidth, with the goal of aggregating that bandwidth
or supporting failover. LLC’s bandwidth, however, is a rounding
error compared to HBC’s. Other works – particularly Socket Intents
[31] and TAPS [27] – exploit multi-access connectivity through
application-level input, which we prefer to avoid to ease deployment
and expand relevance to other applications in the future; therefore
we expect new mechanisms are necessary.

To solve these problems, one approach would be to steer traffic at
the granularity of flows or web objects (e.g., large vs. small). To be
as selective as possible in our use of LLC, we design a fine-grained
packet-level steering scheme. The scheme uses simple heuristics
to identify packets that are more likely to help the application if
they are accelerated, while using a very limited amount of state to
minimize the out-of-order delivery that can result from accelerating
only a subset of packets in a flow. Since this steering scheme does
not solicit extra information from applications, we can present a
virtual network interface to the application, and transparently steer
each packet sent to that interface over HBC or LLC.

To evaluate our design with a concrete scenario, we leverage 5G’s
eMBB and URLLC as our HBC and LLC. We utilize an emulation
environment that includes a typical mobile web browsing scenario: a
client with two network channels emulating characteristics of eMBB
and URLLC radio access networks and the cellular core, as well
as CDN edge, parent, and origin servers. We populate this setup
with landing page snapshots of 53 popular web sites and test various
assumptions about eMBB and URLLC performance. We evaluate
several object and packet steering schemes, and prior approaches
such as MPTCP [1] and ASAP [21]. Our findings conclude that
packet-granularity schemes, which require little to no per-connection
state and no application knowledge, provide the best performance.
For the best steering scheme, even with a modest bandwidth of
2Mbps allocated to URLLC, we can reduce mean page load time
(PLT) by 26% compared to exclusively using eMBB. If eMBB’s
latency fluctuates, increasing from 30ms to 150ms (which is typical
for mmWave channels [15, 19]), combining eMBB and URLLC
decreases mean PLT by 59%.

Finally, we discuss deployment strategies, challenges, and future
opportunities. Although we have focused on web browsing in this
short paper, we believe our basic techniques can apply to a wide
variety of latency-sensitive applications, and open new opportunities
for app developers and cellular providers.

2 BACKGROUND & RELATED WORK
Web browsing traffic: Web browsing traffic is characterized by its
often short and bursty flows, in which latency matters more than
bandwidth. A web page easily contains tens to hundreds of relatively
small-sized objects distributed across multiple servers and domains.
A study across Alexa Top 200 pages found that the median number
of objects in a page is 30, while the median object size is 17 KB [36].
This translates to many HTTP request-and-response interactions

across many short flows. Page load time (PLT) is thus typically
dominated by DNS lookup, connection establishment, and TCP
convergence time – which require little throughput but are highly
dependent on RTT. Increasing TCP throughput beyond ≈ 16 Mbps
offers little improvement in PLT [33].
Channels in 5G: The 5G NR (New Radio) standard provides dif-
ferentiated services to support diverse applications. (1) Enhanced
mobile broadband (eMBB) is an HBC that serves standard mobile
Internet applications. It is considered to be an upgraded 4G mobile
broadband with higher data rates. A key enabling technology is
the use of mmWave bands which offer high bandwidth. A recent
measurement study on commercial mmWave 5G networks in the
US shows TCP throughput of up to 2 Gbps for download and 60
Mbps for upload, with a mean RTT of 28 ms measured between the
client and the first-hop edge server right outside the cellular network
core [24].1 (2) Ultra-reliable low-latency communication (URLLC),
as an LLC, is intended for mission-critical and specialized latency-
sensitive applications such as self-driving cars, factory automation,
and remote surgery. It focuses on providing highly reliable, very
low latency communication at the cost of limited throughput. While
URLLC is yet to be deployed, the standard is finalized and specifies
a 0.5 ms air latency (1 ms RTT) between the client and the Radio
Access Network (RAN) with 99.999% reliability for small pack-
ets (e.g. 32 to 250 bytes) [6]. It also specifies a target end-to-end
latency (from a client to a destination typically right outside the
cellular network core) between 2 to 10 ms with throughput in the
range of 4 Mbps [3]. URLLC is expected to guarantee such perfor-
mance through dedicated network resources achieved via network
slicing [3].
Leveraging multiple connections: MPTCP [30] provides an end-
to-end transport protocol that supports multiple interfaces. Socket
Intents [31] and Intentional networking [20] both expose custom
API to application and offer OS-level support for managing multiple
interfaces. Both of them regulate application traffic based on the
application-specific information. These efforts are complimentary
to ours since we focus on mapping the application traffic to HBC
and LLC. Perhaps, works most relevant to ours are IANS [12] and
ASAP [21]. IANS leverages Socket Intents to improve web page
load. Unlike our approach (i.e., packet steering schemes), however,
they require application-specific information (i.e., object size) to
determine which interface to use and they work at the object level.
We compare ASAP with our scheme in §4.2, and found that our
scheme performs better due to its finer-grained decision.

3 TRAFFIC SPLITTING SCHEMES
In general, a scheme to split traffic between HBC and LLC needs
to judiciously steer only a small portion of traffic through LLC to
avoid overloading it (which would congest queues, negating latency
benefits); and that small portion should yield the most benefit to
application-level performance.

We investigate heuristics for web browsing in object-level and
packet-level which employ different tradeoffs. Object-level splitting

1These measurements, however, were performed in conditions favorable to mmWave
with line of sight, no mobility, and few clients. eMBB latency is expected to be higher
as the number of users increases and as users move, especially for mmWave since the
user or other obstacles can easily block the beam, leading to unreliable and inconsistent
performance [2, 23, 24].

Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels HotMobile '21, February 24–26, 2021, Virtual, United Kingdom

Figure 1: HTTP traf�c delivery on TCP. It also shows per-packet mapping done by the packet steering scheme (pkt-state).

may bene�t from application-level knowledge about web objects,
but requires application input. Packet-level splitting can bene�t from
�ner-grained decisions, but needs to deal with challenges of out-of-
order delivery (OOD) if packets within a �ow are sent on different
channels. We consider several natural schemes in each class, and
design a new packet-level scheme that minimizes OOD.
Object-level splitting: A web page is comprised of many objects
that vary in size. Inspired by prior works [12, 34], the simplest
splitting heuristic is to request objects smaller than some threshold
over LLC, as their load times are dominated by latency. All other
objects use HBC. Note that this approach requires the application
to specify object size, or to make the splitting choice itself. Our
evaluation (with URLLC and eMBB) tests thisobj-sizescheme
using two different thresholds of3 KBand6 KB. (The reasoning is
that URLLC supports a maximum rate of� 250 bytesper ms, and
its RTT difference with eMBB is� 25 ms. Therefore, objects of size
¡ 6”25 KBare likely delivered faster on eMBB.)

Another approach is to leverage application-level priority of web
objects. Web pages have complex dependency structures, and certain
objects can be on the critical path for web page loading. We evaluated
a scheme (obj-priority) by utilizing Chrome priority assignment [17]
to only fetch thehighestpriority object via LLC. Note that this
scheme may not be a perfect �t either, because high priority objects
could be large (HTML pages, which tend to have the highest priority,
can be much larger than6”25KB) and will load faster via HBC.
Packet-level splitting: A simple packet-level heuristic is to send
all client-to-server traf�c over LLC and all server-to-client traf�c
over HBC; we call this schemepkt-uplink. The intuition is that client
requests are generally small. This scheme might not perform well,
however, if the client sends a large amount of data to the server (e.g.,
using HTTP POST), and misses acceleration opportunities from
server to client.

To devise a better heuristic, we investigate the traf�c that arises
when loading a typical web page. Before loading a page, the client
exchanges small UDP packets (Ÿ250 bytes) with the nameserver to
perform DNS lookup; delivering them on URLLC can accelerate the
lookup process. The client continues by exchanging TCP packets
with the web server as shown in Figure 1. Packets in the TCP �ow can

be categorized ascontrol packetsanddata packets. Control packets
are packets only intended to manage TCP operations (e.g., SYN
and ACK packets), and do not carry any payload. These packets are
tiny, and accelerating them will bene�t the entire �ow. For instance,
accelerating SYN packets allows faster connection establishment
while accelerating the client's ACK packets reduces �ow RTT, which
is crucial because RTT largely determines web object download
times for small objects. Thus, we include a scheme (pkt-control) that
only of�oads control packets to LLC in our evaluation.

Data packetsare packets that carry a payload. Mappingdata
packetsto LLC can quickly consume the bandwidth, yet each packet
does not provide equal bene�t from acceleration. In Figure 1b, accel-
erating a single packet in thesecondHTTP response will complete
the response, while accelerating a mere single in to the�rst HTTP
response will cause head of line blocking. We observed that when a
data cannot �t into one packet, it will be fragmented into multiple
packets, with most of them being MTU-sized (see HTTP response
1 in Figure 1b). Thus, MTU-sized packets are likely belongs to a
larger transfer, and thus arenot worth accelerating.

However, not all non-MTU-sized packets are worth accelerating.
For instance, the last (tail) packet of the HTTP response (Seq 6 in
Figure 1b) is most likely less than MTU, and accelerating that will
result in out-of-order delivery (OOD) that may confuse application.
We can identify tail data packet with a simpleper-connection state
to remember its one preceding packet; if its preceding packet is
MTU-sized, this packet is more likely to be the tail packet.

Guided by all these observations, we devise a simple packet
steering scheme (pkt-state) that can determine whether a packet
should be sent through LLC. It stores state for each connection
to remember the size of the last packet delivered, and uses only
packet size to make decisions. Figure 1 shows the end-result of
packet-level mapping of thepkt-statefor HTTP traf�c. Leveraging
this scheme, all non-MTU-sized packets except the tail data packets
will be delivered through LLC, including DNS packets, control
packets, and small data packets. Even though we were inspired by
the HTTP traf�c pattern in designing this scheme, we believe that
this approach can be bene�cial to other application traf�c as well
since our approach is application-agnostic.

HotMobile '21, February 24–26, 2021, Virtual, United Kingdom Sentosa, et al.

Algorithm 1: PKT-State
Result: Send a packet to either HBC or LLC
if size(pkt) < MTU and size(prev_pkt) < MTUthen

send(pkt, LLC); /* control or small data pkt */
else

send(pkt, HBC); /* tail or MTU-sized pkt */
end

Figure 2: Baseline emulation setup

4 EVALUATION
We evaluate performance with emulated 5G eMBB and URLLC,
and with parameters representing possible future channels.

4.1 Emulation and experimental setup
Our emulation setup (Figure 2) re�ects the dependence of web
applications on content delivery networks (CDNs). CDNs comprise
a hierarchy of caches [9]. Here, the client's request �rst reaches an
edge server. In case of a cache miss it is forwarded to a parent server,
and in case of a second cache miss it is forwarded to the origin server
storing the content. Request latency is therefore variable.

The client has two parallel paths (along eMBB and URLLC)
to the edge server. The bandwidth and RTT of the eMBB path
(1500 Mbps+ 30 ms) is based on recent 5G measurements [24], and
for URLLC (2 Mbps+ 5 ms) on its sample use cases [3]. This base
eMBB con�guration is based on perfect line of sight with no mobility.
For the CDN latency, we assume that both the edge and parent
servers are located in the US midwest while the origin server is
located on the US west coast. Based on publicly available network
latency information [5], we use10 msRTT from edge to parent and
40 msRTT from parent to origin.

Our experiments use a machine running Ubuntu 16.04 LTS with
32 GB RAM, 512 GB SSD, and an Intel Core i7-9700 CPU. The web
server runs on Apache 2.4.18, while the client uses Chromium v81.
The experiments use HTTP 1.1, leaving an evaluation of HTTP/2
and QUIC to future work.

We use Mahimahi [25] to record and replay web pages. We mod-
i�ed Mahimahi to include the CDN hierarchy, our packet steering
techniques in Mahimahi's packet scheduling modules, and an HTTP
proxy to enable object-level steering.

To realistically emulate cache misses and hits in the CDN, our
evaluation uses web pages for which we can get this information
from HTTP headers. HTTP pragma headers, used by CDNs for
debugging, can be used to glean this information [29]. We started
with a random sample of top-ranked Alexa pages and found53that
provide the pragma headers. We recorded and locally replayed these
sites' landing pages, whose mean size is2”13 MBand whose 95th

percentile size is6”13 MB. We replayed each page load �ve times
and reported its median PLT (based on the onLoad event [26]). We
used cold DNS and browser caches for all experiments.

Figure 3: Comparisons between object-level and packet-level
steering. The baseline has a mean PLT of1635 ms.

4.2 Evaluation of multiple schemes
We evaluated three object-level and three packet-level steering schemes
(§3), and compared them with a baseline where the client only uti-
lized eMBB (all-embb), and with Multipath TCP (MPTCP) [1] and
ASAP [21]. MPTCP spreads traf�c across multiple interfaces; we
evaluated the default Linux kernel implementation. ASAP was de-
signed to accelerate PLT in satellite networks by of�oading some
traf�c to 3G/4G (which had lower latency but higher cost per byte
than satellites, in [21]). Figure 3 and Table 1 summarize the results.

Object-level splitting performs poorly. Obj-Priority is often worse
than the baseline since it sends high priority objects to the low-
latency channel, but these can be large. The size-based heuristics do
not improve much compared to the baseline – only about 25% of web
pages have¡ 10%lower PLT – and they are sometimesworse. This
is because many small objects (like icons) do not affect PLT much.
Some pages perform slightly worse because of resource contention
on URLLC when fetching multiple small objects in parallel.

Packet-level splitting, in contrast, performs consistently well,
especiallypkt-state, which has1243 msmean PLT (a 26% improve-
ment) while only of�oading 12.6% of bytes to URLLC. Interestingly,
pkt-controlimproves mean PLT by 18.5% by only of�oading con-
trol packets comprising 3.1% of bytes. These improvements stem
from the �ner granularity of splitting, such thateveryweb object
experiences faster download, ultimately improving PLT forall pages.
Unsurprisingly, the smaller web pages tend to improve more, as their
PLT is more dominated by latency than bandwidth.
Understandingpkt-stategains: To understand the network-related
gain ofpkt-state, we usecurl to download the HTML document of
amazon.comwithin our emulation setup. This object is cached at
the edge, so no CDN delay is incurred. Table 2 shows thatpkt-state
performs better than not onlyall-embb, but alsoall-urllc . This is
becausepkt-stateof�oads (1) DNS packets that reduce DNS lookup
time, (2)control packetsthat reduce connection (SYN packets) and
object transfer time (Client's ACK packets), and (3) smalldata
packetsthat accelerate small data transfer such as TLS client key
transfer or HTTP request data. Meanwhile, it bene�ts from the higher
bandwidth thanall-urllc which contributes to a better transfer time.
Comparison with existing works: MPTCP generally fails to per-
form better than always using a single eMBB path. Vanilla MPTCP
is known to perform sub-optimally under heterogeneous paths due
to head-of-line blocking [13] and its policy to lean towards load
balancing among multiple paths. A superior MPTCP scheduler may

Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels HotMobile '21, February 24–26, 2021, Virtual, United Kingdom

Figure 4: Mean load time across different pages: the landing
page (LP) and four internal pages (P1, P2, P3, P4)

Steering scheme
Mean bytes

per page
% bytes Avg rate (Mbps)

Mean 90th Mean 90th

MPTCP [1] 476.3 KB 22.1% 41.6%
U: 0.15
D: 0.68

U: 0.24
D: 1.02

OBJ-Priority 259.6 KB 12.8% 29%
U: 0.10
D: 1.13

U: 0.14
D: 1.75

OBJ-Size-3KB 118.1 KB 5.5% 11%
U: 0.21
D: 0.45

U: 0.42
D: 0.82

OBJ-Size-6KB 242.8 KB 10.7% 20.3%
U: 0.28
D: 0.73

U: 0.46
D: 1.32

PKT-Uplink 186.7 KB 8.6% 13.5%
U: 0.38

D: 0
U: 0.66

D: 0

PKT-Control 62.8 KB 3.1% 4.6%
U: 0.1
D: 0.04

U: 0.17
D: 0.07

ASAP [21] 257 KB 12.3% 20.3%
U: 0.85
D: 0.50

U: 1.26
D: 0.77

PKT-State 260.5 KB 12.6% 20.4%
U: 0.87
D: 0.52

U: 1.28
D: 0.81

Table 1: Traf�c sent over URLLC by each scheme, in bytes per
page, percent of total bytes of page load, and mean upload (U)
and download (D) rate.

achieve better results, and could provide a deployment path for parts
of our work (§5).

ASAP performs similar topkt-statewith 23% mean improvement.
ASAP splits packets based on its corresponding HTTP phase; it
accelerates DNS, connection (TLS + SSL) handshake, and HTTP
request traf�c, while leaving HTTP responses for eMBB. This as-
sumes that HTTP requests are small, which is mostly true when a
browser loads a single landing page, but does not hold in general. A
simple example is when a user uploads a photo, but we also found
that ASAP encounters problems as the user browses deeper into the
site.

Speci�cally, we performed a smaller-scale experiment to simu-
late an interactive browser session. We picked 21 web sites from
our corpus that have “hamburger” menu buttons, and for each site
we performed an automated click through four different menus in
the same browser session. ASAP performs worse as subsequent
pages are loaded (Figure 4). This happens because as the user clicks
through internal links, more data is pushed to the server, resulting
in larger HTTP request traf�c, as shown by the increased request
size on the 99th percentile – 1.92 KB per page for landing pages
compared to 2.9 KB when visiting four additional pages.

In summary, ASAP has several drawbacks: slightly worse mean
and variance PLT for the landing page, noticeably worse PLT for
subsequent pages, and is more tied to HTTP.

Perf. metric All-eMBB All-URLLC PKT-State

DNS lookup 60 ms 12 ms 12 ms
TCP connect 32 ms 6 ms 6 ms
TLS connect 180 ms 94 ms 92 ms

Object transfer 92 ms 427 ms 54 ms
Total loading time 399 ms 579 ms 183 ms

Avg. download rate 2”2 Mbps 1”5 Mbps 4”8 Mbps

Table 2: A deeper look at thepkt-stateperformance when fetch-
ing the landing page of amazon.com (110 KB).

Figure 5: Varying eMBB and URLLC network conditions, con-
ducted using the baseline setup (Figure 2) with a single varying
parameter, except (c) where we change two parameters.

4.3 Varying network performance
We evaluated the best heuristic (pkt-state) under different LLC and
HBC network characteristics.
Varying eMBB network RTTs: RTT in�ation is common in mo-
bile networks due to bufferbloat [18, 22] and physical properties,
especially under movement. We evaluated in�ated RTT on the HBC,
and foundpkt-stateprovides even larger improvements (Figure 5a).
pkt-statehas 59% (� 2”4�) lower PLT thanall-embbwhen the
eMBB RTT is150 ms, which is possible [24] when the channel is
heavily utilized. Sincepkt-stateuses eMBB primarily for bandwidth-
intensive traf�c, it is extremely robust to worsened RTT on the main
channel.
Varying URLLC network RTTs: Although URLLC is expected
to deliver consistent low latency, we evaluate latency in�ation on
URLLC to re�ect scenarios where web traf�c is de-prioritized in
favor of critical traf�c. pkt-stateis still superior with URLLC latency
increasing up to20ms and eMBB held at30ms (Figure 5b). To
prevent worse performance, the client could periodically probe the
LLC and if its latency is too high, fall back to using the HBC.
Varying URLLC bandwidth: pkt-staterequires little bandwidth:
its PLT �attens for more than2 Mbps(Figure 5c). This is expected
since its average data rate is only0”87 Mbpsup and0”52 Mbpsdown
(Table 1). The �gure also shows we cannot entirely rely on URLLC
(all-urllc) as it needs more than10 Mbpsto approach the baseline.

	Abstract
	1 Introduction
	2 Background & related work
	3 Traffic splitting schemes
	4 Evaluation
	4.1 Emulation and experimental setup
	4.2 Evaluation of multiple schemes
	4.3 Varying network performance

	5 Deployment in 5G
	6 Research opportunities
	7 Conclusion
	Acknowledgments
	References

