IMD Shield: Securing Implantable Medical Devices
Shyamnath Gollakota (MIT), Haiitham Al Hassanieh (MIT), Benjamin Ransford (UMass Amherst), Dina Katabi (MIT), Kevin Fu (UMass Amherst)

To appear at ACM SIGCOMM 2011, August 15–19, Toronto

How can we protect a wireless device we cannot modify?

Wireless communication in implantable medical devices (IMDs) improves quality of care, but imports security and privacy risks [Oakland 2008]. Millions of IMDs are implanted in patients and cannot be upgraded. Can we protect them from known wireless attacks?

The IMD Shield

A companion device that protects an unmodified IMD from known attacks: passive eavesdropping and active unauthorized commands.
Key idea: Friendly jamming, applied judiciously.

- **TX Antenna:** Transmits a random jamming signal to drown out IMD and programmer transmissions.
- **RX+TX Antenna:** Receives desired signal, transmits antidote that cancels jamming signal only at the RX+TX antenna.

Before IMD Shield: A passive eavesdropper could intercept and decode IMD transmissions.
After: IMD Shield’s random jamming during IMD transmissions reduces an adversary to guessing.

Before IMD Shield: An active attacker could successfully issue unauthorized commands to an IMD.
After: IMD Shield’s random jamming during programmer transmissions prevents the IMD from ever hearing the command.

Encryption on the Air

The IMD Shield’s random jamming signal works like a one-time pad; it does not store secrets. Jamming results in additive noise that overwhelms the IMD’s private signal. Only the IMD Shield knows the random jamming signal and can subtract it from the noisy signal.

Emergency access: When the IMD Shield is off or not present, the system fails open by reverting to the status quo (clear text).

IMD Shield Caveats

- We assume that the IMD Shield can establish a secure channel with a legitimate IMD programmer. In practice, an out-of-band key exchange (e.g., tactile or visual) might suffice.
- Our software-radio prototype of the IMD Shield is much larger than a production-ready wearable device would be.
- How should a wearable IMD Shield be powered?
- A sufficiently powerful adversary can overpower the IMD Shield to talk to the IMD, but in this case the IMD Shield sounds an alarm.

Timeline of Recent Related Work

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>[ACISP 2005]</td>
<td>Rieback et al. implement friendly jamming for privacy in the RFID Guardian device</td>
</tr>
<tr>
<td>2008</td>
<td>[Pervasive 2008]</td>
<td>Halperin et al. propose a threat model for IMDs and highlight theoretical risks</td>
</tr>
<tr>
<td>2009</td>
<td>[HealthSec 2010]</td>
<td>First USENIX Workshop on Health Security and Privacy—papers include “Privacy Challenges for Wireless Medical Devices” and “Insulin Pump System Security”</td>
</tr>
<tr>
<td>2008</td>
<td>[HotSec 2008]</td>
<td>Denning et al. propose the communication cloaker, conceptual ancestor of IMD Shield. Companion device requires IMD to be made aware of it</td>
</tr>
<tr>
<td>2011</td>
<td>[INFOCOM 2011]</td>
<td>Jam (Gollakota et al.): Jam while receiving to prevent eavesdropping of a protected signal, OFDM-based technique requires protected device to be modified. IMDGuard (Xu et al.): Another approach adds crypto to IMDs and a wearable device that acts as an authentication proxy; requires IMDs to be modified.</td>
</tr>
<tr>
<td>2010</td>
<td>[MobiCom 2010]</td>
<td>Choi et al. demonstrate single-channel, full-duplex wireless communication. Requires half-wavelength antenna separation (vs. IMD Shield’s arbitrarily small size)</td>
</tr>
<tr>
<td>2011</td>
<td>[SIGCOMM 2011]</td>
<td>IMD Shield incorporates full-duplex wireless and friendly jamming to combat eavesdropping and adversarial commands</td>
</tr>
</tbody>
</table>

Support: NSF CNS-0831244, NSF GRFP, DHHS Cooperative Agreement No. 98TR0003/01 — Find out more at http://groups.csail.mit.edu/netmit/IMDShield/