RF-Cloak: Securing RFID Cards Without Modifying them

Haitham Hassanieh

Jue Wang, Dina Katabi, Tadayoshi Kohno
RFIDs Are Used in Sensitive Applications

- Access Control
- Credit Cards
- Passports
- Pharmaceutical Drugs
- Anti-Theft Car Immobilizers
- Public Transportation
RFIDs Are Used in Sensitive Applications

Access Control
[SECRIPT’09, S&P’09, ESORICS’08, Usenix’08]

Credit Cards
[DefCon’13, ShmooCon’12, DefCon’11, Usenix’05]

Passports
[DefCon’12, HackaDay’12, BlackHat’06]

Pharmaceutical Drugs
[CCS’09, RFID’06]

Anti-Theft Car Immobilizers
[Usenix’12, Usenix’05]

Public Transportation
[Defcon’08, MIT’08, S&P’09]
Hacking RFIDs for Dummies
RFIDs adopt weak encryption protocols
Hacking RFIDs Simply By Eavesdropping

RFIDs adopt weak encryption protocols

Goal of RFID Industry: Dramatically reduce the power, size, and cost of RFIDs
Protect your RFID cards against active attacks
Protect your RFID cards against active attacks

Most attacks demonstrated by eavesdropping

Need solution for eavesdropping that works with existing RFIDs
RF-Cloak

System that protects RFIDs against eavesdropping attacks

- Does not require any modification to the RFID cards
- Protects against a wide range of attackers including multi-antenna MIMO eavesdroppers
- Theoretically proven the security guarantees
- Implemented the system and empirically demonstrated its benefits
RFID Communication

Reader transmits constant waveform: C
RFID reflects the reader’s signal using ON-OFF switch
Reader receives (full-duplex): $h \times C \times \text{bits}$
Eavesdropper receives: $h_r \times C + h_c \times C \times \text{bits}$

Replace constant waveform C with a random waveform $R(t)$
RF-Cloak Solution

Reader transmits random waveform: $R(t)$

RFID reflects the reader’s signal using ON-OFF switch

Reader receives (full-duplex): $h \times R(t) \times \text{bits}$

Eavesdropper receives: $h_r \times R(t) + h_c \times R(t) \times \text{bits}$

Replace constant waveform C with a random waveform $R(t)$
RFID reflects the reader’s signal using ON-OFF switch.

Reader transmits random waveform: $R(t)$

RFID reflects the reader’s signal using ON-OFF switch.

Reader receives (full-duplex): $h \times R(t) \times bits$

Eavesdropper receives: $h_r \times R(t) + h_c \times R(t) \times bits$

Reader knows $R(t) \Rightarrow$ Can decode
Eavesdropper doesn’t know $R(t) \Rightarrow$ Cannot decode
RF-Cloak: Randomizing the Reader’s Signal

- Random waveform acts like a one-time pad on the air
 → Naïve solution: Multiply each bit with random number

RFID Signal:
RF-Cloak: Randomizing the Reader’s Signal

- Random waveform acts like a one-time pad on the air
 → Naïve solution: Multiply each bit with random number

RFID Signal:

Random waveform must destroy internal signal patterns of the bits
RF-Cloak: Randomizing the Reader’s Signal

Random waveform:

• Must change as fast as any transition in the RFID signal → has same bandwidth as RFID signal

• Must be indistinguishable from white noise i.e. flat frequency profile → samples taken from complex Gaussians
RF-Cloak: Randomizing the Reader’s Signal

Threat model:
Single antenna eavesdropper using the optimal decoder

Guarantee: (informally restated)

Theorem 1: Using RF-Cloak’s random signal $R(t)$, an eavesdropper will not be able to distinguish a 0 bit from a 1 bit which is no better than a random guess
What if the attacker has multi-antenna MIMO capability?
Reader transmits random waveform: $R(t)$

Eavesdropper receives:

1st receiver: $Y_1(t) = h_{r1} \times R(t) + h_{c1} \times R(t) \times \text{bits}$

2nd receiver: $Y_2(t) = h_{r2} \times R(t) + h_{c2} \times R(t) \times \text{bits}$

\[
\frac{Y_1(t)}{Y_2(t)} = \frac{h_{r1} + h_{c1} \times \text{bits}}{h_{r2} + h_{c2} \times \text{bits}}
\]
MIMO Eavesdropper can eliminate the random waveform and decode the RFID bits.

Reader transmits random waveform: \(R(t) \)

Eavesdropper receives:

1\(^{st} \) receiver: \(Y_1(t) = h_{r1} \times R(t) + h_{c1} \times R(t) \times \text{bits} \)

2\(^{nd} \) receiver: \(Y_2(t) = h_{r2} \times R(t) + h_{c2} \times R(t) \times \text{bits} \)

\[
\frac{Y_1(t)}{Y_2(t)} = \frac{h_{r1} + h_{c1} \times \text{bits}}{h_{r2} + h_{c2} \times \text{bits}}
\]
RF-Cloak vs MIMO Eavesdropper

Antenna War!
RF-Cloak vs MIMO Eavesdropper

Antenna War!
RF-Cloak vs MIMO Eavesdropper

RF-Cloak combines antenna motion and rapid antenna switching
→ Emulate a very large number of fast changing antennas
RF-Cloak vs MIMO Eavesdropper

- Channels to eavesdropper change very fast \rightarrow Cannot separate RFID signal from Reader signal
 \rightarrow Cannot decode

- Reader (full duplex) \rightarrow Only receives reflection from RFID
 \rightarrow Can decode
RF-Cloak: Randomizing the Wireless Channel

Threat model:
Multi-antenna MIMO eavesdropper using the optimal decoder.

Guarantee: (informally restated)

Theorem 2: Using RF-Cloak’s channel randomization, a MIMO eavesdropper will not be able to distinguish a 0 bit from a 1 bit which is no better than a random guess.
Evaluation

• Implemented RF-Cloak on USRP N210 software radios and combined it with a 1725 rpm motor and ADG904R RF switches.

• Evaluated it against different types of commercial RFID cards

• Evaluation metric: Bit error rate (BER)
RF-Cloak Random Waveform vs Single Antenna Eavesdropper

Eavesdropper has mean BER of 0.498 with std. dev. 0.008
→ Very close to a random guess
A two-antenna MIMO eavesdropper can correctly decode the RFID bits.
RF-Cloak can prevent a MIMO eavesdropper from decoding the RFID’s data.
Related Work

• **Physical layer security:**
 [JCM’07, TCOM’13, SIGCOMM’11, Oakland’13, ICC’12, INFOCOM’11, MobiSys’13, SIGCOMM’13, MobiSys’14]

• **Securing RFIDs against eavesdropping:**
 [CHES’07, RFIDSec’11, CARDIS’06, JRSC’12, PerCom’07]

• **Moving antennas:**
 [SIGCOMM’14, MOBICOM’14, HOTNETS’14, MOBICOM’13, SIGCOM’13, HotMobile’12, ISJ’14]
Conclusion

• RF-Cloak is the first system that can protect deployed RFIDs against eavesdropping without any modification to the RFID

• RF-Cloak is the first system that can hide the signal from MIMO attacker with many antennas even when the reader has no MIMO capability.

• RF-Cloak provides a defense in depth solution.