

Building mmWave Wireless Systems

Omid Abari, Haitham Hassanieh, Michael Rodriguez and Dina Katabi

Significant Interest in mmWave

1000x increase in required bandwidth 50 billion connected devices

Too Many Devices, Too Little Spectrum

mmWave frequency bands offer multi-GHz of unlicensed bandwidth

Significant interest in performing research on mmWave communications

Problem

Absence of any mmWave radio platforms with phased arrays

in the networking community

MiRa's Performance

MiRa enables long-range and high-data-rate communication using phased arrays

MiRa

delivers up to 256 QAM modulation and operates at distances that exceed 100 meters

MiRa's MU-MIMO

MiRa enables all USRP-GNU functions to be performed in mmWave frequencies

Example: coordinate multiple USRPs with a shared clock to act as a MIMO device

MiRa's MU-MIMO increases the network throughput by an average of 1.6x

256 QAM

16 QAM

()))	

MiRa: Millimeter Wave Radio Platform

Built a mmWave phased array radio operating in the 24GHz ISM band

Heterodyne Architecture

USRP

Operates as a daughterboard for the USRP software radio

Challenge mmWave radios use highly directional antennas

Challenge Line-of-sight can be blocked by obstacles

How to enable high data rate in the case of a blockage?

