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Abstract– We present BigBand, a technology that can capture
GHz of spectrum in realtime without sampling the signal at
GS/s –i.e., without high speed ADCs. Further, it is simple
and can be implemented on commodity low-power radios.
Our approach builds on recent advances in the area of sparse
Fourier transforms, which show that it is possible to reconstruct
a sparse signal without sampling it at the Nyquist rate. To
demonstrate our design, we implement it using 3 software
radios, each sampling the spectrum at 50 MS/s, producing
a device that captures 0.9 GHz — i.e., 6× larger digital
bandwidth than the three software radios combined. Finally,
an extension of BigBand can perform GHz spectrum sensing
even in scenarios where the spectrum is not sparse.

1 INTRODUCTION

The rising popularity of wireless communication and the
potential of a spectrum shortage have motivated the FCC
to take steps towards releasing multiple bands for dynamic
spectrum sharing [1]. The government’s interest in re-purposing
the spectrum for sharing is motivated by the fact that the actual
utilization of the spectrum is sparse in practice. For instance,
Fig. 1 from the Microsoft Spectrum Observatory [2] shows
that, even in urban areas, large swaths of the spectrum remain
underutilized. To use the spectrum more efficiently, last year,
the President’s Council of Advisors on Science and Technology
(PCAST) [3] has advocated dynamic sharing of much of the
currently under-utilized spectrum, creating GHz-wide spectrum
superhighways “that can be shared by many different types
of wireless services, just as vehicles share a superhighway by
moving from one lane to another.”
Motivated by this vision, this paper presents BigBand, a

technology that enables realtime GHz-wide spectrum sensing
and reception using low-power radios, similar to those in WiFi
devices. Making GHz-wide sensing (i.e. the ability to detect
occupancy) and reception (i.e. the ability to decode) available
on commodity radios enables new applications:

• In particular, realtime GHz sensing enables highly dynamic
spectrum access, where secondary users can detect short sub-
millisecond spectrum vacancies and leverage them, thereby
increasing the overall spectrum efficiency [4].

• Further, a cheap low-power GHz spectrum sensing tech-
nology enables the government and the industry to deploy
thousands or such sensors in a metropolitan area for large-
scale realtime spectrum monitoring. This will enable a
better understanding of spectrum utilization, identification
and localization of breaches of spectrum policy, and a more-
informed planning of spectrum allocation.

• Beyond sensing, the ability to decode signals in a GHz-
wide band enables a single radio to receive concurrent
transmissions from diverse parts of the spectrum. This would
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Fig. 1—Spectrum Occupancy: The figure shows the average spec-
trum occupancy at the Microsoft spectrum observatory in Seattle on
Monday January 14, 2013 during the hour between 10 am and 11 am.
The figure shows that between 1 GHz and 6 GHz, the spectrum is
sparsely occupied.

enable future cell phones to use one radio to concurrently
receive Bluetooth at 2.4 GHz, GSM at 1.9 GHz, and CDMA
at 1.7 GHz.

Realtime GHz signal acquisition, however, is challenging.
For example, existing methods for spectrum sensing, like those
used in the Microsoft spectrum observatory [2], do not work
in realtime. They rely on sequential hopping from one channel
to the next, acquiring only tens of MHz at a time [5], [6]. As
a result, each band is monitored only occasionally, making it
easy to miss short lived signals (e.g., radar).

The key difficulty in capturing GHz of bandwidth in realtime
stems from the need for high-speed analog-to-digital converters
(ADCs), which are costly, power hungry, and have a low bit
resolution [7], [8]. Compare typical low-speed ADCs used in
WiFi or cellular phones with the very high speed ADCs needed
to capture GHz of bandwidth. A 100 MS/s ADC, like in Wi-Fi
receivers, costs a few dollars, consumes a few milli Watts, and
has a 12 to 16-bit resolution [8], [9], [10]. In contrast, a high
speed ADC that can take multiple giga-samples per second may
cost hundreds of dollars, consume multiple orders of magnitude
more power, and have only 6 to 8-bits resolution [7], [8], [9].

In this paper, we explore how one can achieve the best of
both worlds. Specifically, we would like to capture GHz of
spectrum but using only a few ADCs that each samples the
signal at tens of MS/s.

We introduce BigBand, a technology that can acquire GHz
of signal using a few (3 or 4) low-speed ADCs. BigBand can do
more than spectrum sensing – the action of detecting occupied
bands. It can also decode the signal (i.e., obtain the I and Q
components). To achieve its goal, BigBand builds on advances
in the area of sparse Fourier transform [11], [12], [13], which
permit signals whose frequency domain representation is sparse
to be recovered using only a small subset of their samples –
i.e., we can recover GHz of spectrum without sampling it at
the Nyquist rate.

Some past work has proposed using compressive sensing
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to acquire GHz signals at sub-Nyquist rate [14], [15], [16],
[17]. BigBand builds on this work but differs from it sub-
stantially. Approaches based on compressive sensing require
random sampling of the signal which cannot be done simply
by using standard low-speed ADCs. It needs analog mixing at
Nyquist rates [14], [16] and expensive processing to recover
the original signal. Such a design is quite complex and could
end up consuming as much power as an ADC that samples
at the Nyquist rate [18], [19]. Like the compressive-sensing
approaches, BigBand can acquire a wideband signal without
sampling it at the Nyquist rate. Unlike compressive sensing,
however, BigBand does not need analog mixing or random
sampling and can work using commodity radio and standard
low-speed ADCs. Further, it computes the Fourier transform
of a sparse signal faster than the FFT, reducing baseband
processing.

We have built a working prototype of BigBand using USRP
software radios. Our prototype uses three USRPs, each of
which can capture 50 MHz bandwidth to produce a device
that captures 0.9 GHz –i.e., 6× larger bandwidth than the
digital bandwidth of the three USRPs combined. We have
used our prototype to sense the spectrum between 2 GHz and
2.9 GHz, a 0.9-GHz stretch used by diverse technologies [2].
Our outdoor measurements reveal that, in our metropolitan
area,1 the above band has an occupancy of 2–5%. These results
were verified using a spectrum analyzer are in sync with similar
measurements conducted at other locations [2]. We further use
our prototype to decode 30 transmitters that are simultaneously
frequency hopping in a 0.9 GHz band, hence demonstrating that
BigBand decodes the signals, not only senses their power.

Finally, we have extended BigBand to perform spectrum
sensing (not decoding) even when the spectrum utilization
is not sparse. To do so, we leverage the idea that even if
the spectrum itself is densely occupied, only a small fraction
of the spectrum is likely to change its occupancy over short
intervals of a few milliseconds. We build on this basic idea to
sense densely occupied spectrum using sub-Nyquist sampling.
We also evaluate our design empirically showing that it can
detect frequency bands that change occupancy even when the
spectrum is 95% occupied.

2 RELATED WORK

This paper builds on recent theoretical advances in sparse
Fourier sampling [11], [12], [13], [20], [21]. In contrast to
past work however, this paper focuses on the practical problem
of realtime low-power GHz-wide spectrum acquisition, and
presents the first practical system that adapts the sparse FFT
algorithms to address this application. It also implements its
design and empirically evaluates it, demonstrating that it ad-
dresses ADC speed, wireless channels, and radio related issues.
The paper is also the first to adapt the sparse FFT for spectrum
sensing in scenarios with a dense spectrum occupancy.

Our work is related to signal acquisition via digital and
analog compressive sensing [14], [15], [16], [17], [22], [23],
[24]. However, compressive sensing needs random sampling
and analog mixing at Nyquist rates [14], [16], [24]. These
approaches cannot be built using commodity radios and ADCs
with regular sampling; they require a custom design and could
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end up consuming as much power as an ADC that samples at
the Nyquist rate [18], [19].
Our work is also related to theoretical work in signal

processing on co-prime sampling [25], [26], [27]. In [25],
[26], co-prime sampling patterns are utilized to sample sparse
spectrum. These methods however require k ADCs with co-
prime sampling patterns, where k is the number of occupied
frequencies. In contrast, the analysis of our sparse FFT algo-
rithm shows that our approach requires only a constant small
number of ADCs [13]. Our approach is further implemented
and shown to work in practice. In [27], co-prime sampling is
used to sample linear antenna arrays [27]. This work however
assumes the presence of a second dimension where signals can
be fully sampled and cross-correlated and hence cannot be used
for spectrum acquisition.
Also relevant to our work is the theoretical work on using

multicoset sampling to capture the signals in a wideband sparse
spectrum with a small number of low speed ADCs [28],
[29]. However, in order to recover the original signals from
the samples, these techniques require prior knowledge of the
locations of occupied frequencies in the spectrum and hence
are not useful for spectrum sensing. In contrast, our approach
recovers both the locations of the occupied frequencies and
the signals in these frequencies and thus can be used for both
spectrum sensing and decoding.
Some proposals for test equipment reconstruct wideband

periodic signals by undersampling [30], [31]. These approaches
however assume that the signal is periodic –i.e., the same signal
keeps repeating for very long time – which allows them to take
one sample during each period until all samples are recovered
and rearranged in the proper order. Though this requires one
low speed ADC, it is only applicable to test equipment where
the same signal is repeatedly transmitted [30].
Finally, there is also significant literature about spectrum

sensing. Most of this work focuses on narrowband sensing [32],
[33], [34]. It includes techniques for detecting the signal’s
energy [33], its waveform [32], its cyclostationarity [35], or
its power variation [34]. In contrast, we focus on wideband
spectrum sensing, an area that is significantly less explored.
A recent system called QuickSense [36] senses a wideband
signal using a hierarchy of analog filters and energy detectors.
BigBand differs from QuickSense in that it can recover the
signal (obtain the I and Q components) as opposed to only
detecting spectrum occupancy. Second, for highly utilized
spectrum (i.e. not sparse), the approach in [36] reduces to se-
quentially scanning the spectrum whereas BigBand’s extension
for the non-sparse case provides a fast sensing mechanism.

3 BIGBAND

BigBand is a receiver that can recover a sparse signal
with sub-Nyquist sampling using low-power commodity radios.
Thus, BigBand can do more than spectrum sensing – the action
of detecting occupied bands. BigBand provides the details of
the signals in those bands (I’s and Q’s of wireless symbols),
which enables decoding those signals.
BigBand adapts the sparse FFT algorithm for spectrum

acquisition using low speed ADCs. We use x and x̂ to denote
a time signal and its Fourier transform respectively. We also
use the terms: the value of a frequency and its position in
the spectrum to distinguish x̂f and f . BigBand discovers the
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Fig. 2—Bucketization using aliasing filter: Sub-sampling a signal by
3× in the time domain, results in the spectrum aliasing. Specifically,
the 12 frequency will alias into 4 buckets. Frequencies that are equally
spaced by 4 (shown with the same color) end up in the same bucket.

occupied frequency positions f and estimates their values x̂f .
Once x̂ is computed, it can recover the time signal x and decode
the wireless symbols. BigBand’s design has three components:
frequency bucketization, estimation, and collision resolution.
Below we explain these components. (Further details of Big-
Band can be found in our technical report [37] and the complete
analysis of the algorithm and proofs of correctness can be found
in [13].)

3.1 STEP 1: Frequency Bucketization

BigBand starts by hashing the frequencies in the spectrum
into buckets. Since the spectrum is sparsely occupied, many
buckets will be empty and can be simply discarded. BigBand
then focuses on the non-empty buckets, and computes the
values of the frequencies in those buckets in what we call the
estimation step.

So how can we hash frequencies into buckets? Recall the
following basic property of the Fourier transform: sub-sampling
in the time domain causes aliasing in the frequency domain.
Formally, let x be a time signal of bandwidth BW, and x̂ its
frequency representation. Let b be a sub-sampled version of x,
i.e., bi = xi·p where p is the sub-sampling factor. Then, b̂, the
FFT of b is an aliased version of x̂, i.e.:

b̂i =

p−1∑

m=0

x̂i+m(BW/p). (1)

Thus, an aliasing filter is a form of bucketization in which
frequencies equally spaced by an interval BW/p hash to
the same bucket, i.e., frequency f hash to bucket i = f
mod BW/p, as shown in Fig. 2. Further, the value in each
bucket is the sum of the values of only the frequencies that hash
to the bucket as shown in Eq. 1. Most importantly, aliasing is
naturally done by sampling the signal using a low-speed ADC
slower than the Nyquist rate.

Now that we hashed the frequencies into buckets, we can
leverage the fact that the spectrum of interest is sparse and
hence most buckets have noise and no signal. BigBand com-
pares the energy (i.e., the magnitude square) of a bucket with
the receiver’s noise level and considers all buckets whose
energy is below a threshold to be empty. It then focuses on
the occupied buckets and ignores empty buckets.

3.2 STEP 2: Frequency Estimation

Next, for each of the occupied buckets we want to identify
which frequencies created the energy in these buckets, and what
are the values of these frequencies. If we can do that, we then
have recovered a complete representation of the frequencies
with non-zero signal values, i.e., we acquired the full signal in
the Fourier domain.

Recall that our spectrum is sparse; thus, as mentioned earlier,
when hashing frequencies into buckets many buckets are likely
to be empty. Even for the occupied buckets, the sparsity of the
spectrum means that many of these buckets will likely have a
single non-zero frequency hashing into them, and only a small
number will have a collision of multiple non-zero (or occupied)
frequencies. In the next section, we present a mechanism
to detect whether a bucket has a collision and resolve such
collisions. In this section, we focus on buckets with a single
non-zero frequency and estimate the value and the position of
this non-zero frequency, i.e., x̂f and the corresponding f .

In the absence of a collision, the value of the occupied
frequency is the value of the bucket. Said differently, the value

of a bucket after aliasing, b̂i is a good estimate of the value
of the occupied frequency x̂f in that bucket, since all other
frequencies in the bucket have zero signal value (only noise).

Although we can easily find the value of the non-zero
frequency in a bucket, we still do not know its frequency
position f , since aliasing mapped multiple frequencies to the
same bucket. To compute f , we leverage the phase-rotation
property of the Fourier transform, which states that a shift in
time domain translates into phase rotation in the frequency do-
main [38]. Specifically, we perform the process of bucketization
again, after shifting the input signal by τ . Since a shift in time
translates into phase rotation in the frequency domain, the value

of the bucket of changes from b̂i = x̂f to b̂
(τ)
i = x̂f · e

2πj·f ·τ .
Hence, using the change in the phase of the bucket, we can
estimate our frequency of interest and we can do this for all
buckets that do not have collisions.
Two points are worth noting:

• First, recall that the phase wraps around every 2π. Hence,
the value of τ has to be small to avoid the phase wrapping
around for large values of f . In particular, τ should be on
the order of 1/BW where BW is the bandwidth of interest.
For example, to acquire one GHz of spectrum, τ should be
on the order of a nanosecond.2

• Second, to sample the signal with a τ shift, we need a second
low-speed ADC that has the same sampling rate as the ADC
in the bucketization step but whose samples are delayed by
τ . This can be achieved by connecting a single antenna to
two ADCs using different delay lines (which is what we do
in our implementation). Alternatively, one can use different
delay lines to connect the clocks to the two ADCs.

3.3 STEP 3: Collision Detection and Resolution

We still need to address two questions: how do we distin-
guish the buckets that have a single non-zero frequency from
those that have a collision? and in the case of a collision, how
do we resolve the colliding frequencies?

3.3.1 Collision Detection

Again we use the phase rotation property of the Fourier
transform to determine if a collision has occurred. Specifically,
if the bucket contains a single non-zero frequency, i.e., no
collision, then performing the bucketization with a time shift
τ causes only a phase rotation of the value in the bucket but

2. In fact, one can prove a looser version of this constraint where large τ
are fine. Formally, for τ larger than 1/BW, the FFT window size must be a
non-integer multiple of τ .



the magnitude of the bucket does not change –i.e., with or

without the time shift, ‖b̂i‖ = ‖b̂
(τ)
i ‖ = ‖x̂f ‖. In contrast,

consider the case where there is a collision between, say, two
frequencies f and f ′. Then the value of the bucket without a

time-shift is b̂i = x̂f + x̂f ′ while its value with a time-shift

of τ is b̂
(τ)
i = x̂f · e

2πj·fτ + x̂f ′ · e
2πj·f ′τ . Since the colliding

frequencies rotate by different phases, the overall magnitude
of the bucket will change. Thus, we can determine whether
there is a collision or not by comparing the magnitudes of the
buckets with and without the time-shift.3

3.3.2 Collision Resolution

To reconstruct the full spectrum, we need to resolve the
collisions –i.e., for each non-zero frequency in a collision
we need to estimate its value x̂f and position f . We present
two approaches for resolving collisions which may also be
combined in case the spectrum is less sparse.

A. Resolving Collisions with Co-prime Aliasing Filters
One approach to resolve collisions is to bucketize the spec-

trum multiple times using aliasing filters with co-prime sam-
pling rates. Co-prime aliasing filters guarantee (by the Chinese
remainder theorem) that any two frequencies that collide in
one bucketization will not collide in the other bucketizations.
To better understand this point, consider the example in Fig. 3.
The first time we bucketize, we use an aliasing filter that sub-
samples the time signal by a factor of 3. In this case, the two
frequencies labeled in red and blue collide in a bucket whereas
the frequency labeled in green does not collide, as shown in the
figure. The second time we bucketize, we use an aliasing filter
that sub-samples by 4. This time the blue and green frequencies
collide whereas the red frequency does not collide. Now we can
resolve collisions by iterating between the two bucketizations.
For example, we can estimate the green frequency from the first
bucketization, where it does not collide. We subtract the green
frequency from the colliding bucket in the second bucketization
to obtain the blue frequency. We then go back to the first
bucketization and subtract the blue frequency from the bucket
where it collides to obtain the red frequency.
Thus, by using co-prime aliasing filters to bucketize and

iterating between the bucketizations –i.e., estimating frequen-
cies from buckets where they do not collide and subtracting
them from buckets where they do collide– we can recover the
spectrum. This suggests that to capture a spectrum bandwidth
BW, we can use two ADCs that sample at rates BW/p1
and BW/p2 where p1 and p2 are co-prime. For example, to
recover a 1 GHz spectrum, we can use a 42 MHz ADC [?]
along with a 50 MHz ADC. The combination of these two
ADCs can capture a bandwidth of 1.05 GHz because 42 MHz
= 1.05 GHz/25 and 50 MHz = 1.05 GHz/21, where 21 and
25 are co-prime. Note that we also repeat each of these co-
prime bucketization with a time shift (as explained in §3.2,
which requires a total of 4 low-speed ADCs.

B. Resolving Collisions without Co-prime Aliasing Filters
Co-prime aliasing filters are an efficient way to resolve

collisions, but they are not necessary. Here, we show how to

3. Even if one occasionally falsely detects a collision when there is a single
frequency, BigBand can still correct this error. This is because the collision
resolution step described next will estimate the values of the presumed colliding
frequencies to zero.
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Fig. 3—Resolving collisions with co-prime filters: Using 2 co-prime
aliasing filters, we ensure the frequencies that collide in one filter will
not collide in the second. For example, frequencies 5 and 9 collide in
the first filter. But frequency 5 dies not collide in the second which
allows us to estimate it and subtract it.

resolve collisions while still using ADCs that sample at the
same rate. This means that one can use one type of ADCs for
building the whole system.4

We use one type of aliasing filter. However, we perform it
for more than twice using multiple different time shifts. To see
how this can help resolve collisions, consider again the case
where two frequencies f and f ′ collide in a bucket. If we use
two time shifts τ1 and τ2, we get three values for each bucket.
For the bucket where f and f ′ collide, these values are:

b̂i = x̂f + x̂f ′

b̂
(τ1)
i = x̂f · e

2πj·fτ1 + x̂f ′ · e
2πj·f ′τ1

b̂
(τ2)
i = x̂f · e

2πj·fτ2 + x̂f ′ · e
2πj·f ′τ2

(2)

If we know the positions of f and f ′, the above becomes an
overdetermined system of equations where the only unknowns
are x̂f , x̂

′
f . Since only few frequencies hash into each bucket,

there is a limited number of possible values of f and f ′. For
each of these possibilities, the above over-determined system
can be solved to find x̂f , x̂

′
f . Hence, we can solve overdeter-

mined system for the possible (f , f ′) pairs and choose the pair
that minimizes the mean square error. While the above does
not guarantee that the solution is unique, in case multiple pairs
(f ,f ′) satisfy the equations, BigBand can detect that event and
report to the user that the values of these frequencies remain
unresolved.5 Our empirical results (in §7.3) show however that
for practical spectrum sparsity (which is about 5%) 3 shifted
bucketizations are enough to uniquely resolve the colliding
frequencies.
We note that though this method requires more digital

computation, we only need to do this for the few buckets that
have a collision, and we know the number of collisions is small
due to the sparsity of the spectrum.
We also note that this method can be combined with the co-

prime approach to deal with less sparse spectrum. In this case,
one uses this method to resolve collisions of two frequencies
while iterating between the co-prime filters.

4 CHANNEL ESTIMATION AND CALIBRATION

The earlier description of BigBand assumes that the different
ADCs can sample exactly the same signal at different time-

4. This makes it possible to build BigBand using only USRPs [39].

5. Note that theoretically, for a collision of k frequencies, 2k samples can
guarantee a unique solution in the absence of noise.
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Fig. 4—Phase rotation vs frequency: The figure shows that the phase
rotation between the 3 USRPs is linear across the 900 MHz frequency
spectrum and can be used to estimate the time shifts.

shifts. However, because the signals experience different chan-
nels, they will be scaled differently and the ADCs will not be
able to sample exactly the same signal.
To better understand this problem, let us consider the case

where we resolve collisions without the co-prime sub-sampling.
In this case, we will have 3 ADCs each sampling a signal that
is delayed by a time shift. In this case, consider a non-zero
frequency f whose value is x̂f . If f hashes to bucket i and does
not collide, then the value of the bucket at each of the ADCs
can be written as:

b̂i = hw(f ) · h1(f ) · x̂f

b̂
(τ1)
i = hw(f ) · h2(f ) · x̂f · e

2πj·fτ1

b̂
(τ2)
i = hw(f ) · h3(f ) · x̂f · e

2πj·fτ2

(3)

where hw(f ) is the channel on the wireless medium,
h1(f ), h2(f ), h3(f ) are the hardware channels on each of the
radios, and ·(f ) indicates that these parameters are frequency
dependent. We can ensure that hw(f ) is the same in all three
bucketizations by connecting the RF frontends to the same
antenna. As a result, hw(f ) cancels out once we take the ratios,

b̂
(τ1)
i /b̂i and b̂

(τ2)
i /b̂i of the buckets. However, the hardware

channels are different for the different bucketizations. We need
to estimate them and compensate for them in order to perform
frequency estimation and also resolve the collisions.
Furthermore, though it is simple to create time-shifts be-

tween the three ADCs as explained in §3.2, we need to
know the values of these time-shifts τ1, τ2 in order to perform
frequency estimation based on phase rotation. Hence, we also
need a way to estimate these time-shifts.

4.1 Estimating the Channels and Time-Shifts

To estimate the channels and the time shifts, we divide the
total bandwidth BW that BigBand captures into p consecutive
chunks. We then transmit a known signal in each chunk, one by
one. Since we only transmit in one chunk at a time, there are
no collisions at the receiver after aliasing. We then use Eq. 3 to
estimate the ratios h2(f ) ·e

2πj·fτ1/h1(f ) and h3(f ) ·e
2πj·fτ2/h1(f )

for each frequency f in the spectrum.
Now that we have the ratios, we need to compute h2(f )/h1(f )

for each frequency f , and the delay τ1. We can estimate this as
follows: Both the magnitude and phase of the hardware channel
ratio will be different for different frequencies. The magnitude
differs with frequency because different frequencies experience
different attenuation in the hardware. The phase varies linearly
with frequency because all frequencies experience the same
delay τ1, and the phase rotation of a frequency f is simply
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Fig. 5—Hardware channel magnitude: The relative channel magni-
tudes |h1(f )/h2(f )| and |h1(f )/h3(f )| are not equal to 1 and are not
flat across the frequency spectrum. Hence, we need to compensate for
these estimates to be able to detect and solve collisions.

2πf τ1. We can therefore plot the phase of the ratio as a function
of frequency, and compute the delay τ1 from the slope of the
resulting line.

Fig. 4 shows the phase result of this estimation performed
on the USRP software radios used in our implementation
described in §6. As expected, the phase is linear across
900 MHz. Hence, by fitting the points in Fig. 4 to a line we
can estimate the shifts τ1, τ2 and the relative phases of the
hardware channels (i.e. 6 h1(f )/h2(f ) and 6 h1(f )/h3(f )). Fig. 5
also shows the relative magnitudes of the hardware channels
on the USRPs (i.e. |h1(f )/h2(f )| and |h1(f )/h3(f )|) over the
900 MHz between 3.05 GHz and 3.95 GHz. These hardware
channels and time shifts are stable. For our implementation,
we estimated them only once at the set up time.

5 SENSING NON-SPARSE SPECTRUM

We extend BigBand’s algorithm to sense a non-sparse spec-
trum. The key idea is that although the spectrum might not be
sparse, changes in spectrum usage are typically sparse, i.e., over
short intervals, only a small percentage of the frequencies are
freed up or become occupied. This makes it possible to estimate
the occupancy without sampling the signal at the Nyquist rate.
We refer to sparse changes as differential sparsity, and call the
extension that deals with such non-sparse spectrum D-BigBand.
We note however that unlike in the case where the spectrum
is sparse, in the non-sparse setting we only perform spectrum
sensing but we cannot recover the I and Q components of the
signal. Below we explain the two components of D-BigBand.

A. Frequency Bucketization: D-BigBand also bucketizes
the spectrum using sub-sampling filters. However, since the
spectrum is not sparse, it is very likely that all buckets will
be occupied. Thus, D-BigBand tries to detect changes in the
occupancy of frequencies that hash to each buckets. To do
so, D-BigBand computes the average power of the buckets
over two consecutive time windows TW by performing the
bucketization multiple times during each time window.6 Since
the changes in spectrum occupancies are sparse, only the
average power of few buckets would change between the two
time windows. D-BigBand can then focus only on the few
buckets where the average power changes.

B. Frequency Estimation: Now that we know in which
buckets the average power has changed, we need to estimate

6. The number of times D-BigBand can average is = TW/T where T is the
FFT window time.



which of the frequencies in the bucket is the one whose occu-
pancy has changed. However, we can no longer use the phase
rotation property to estimate these frequencies or resolve their
collisions since the phase of the bucket now depends on all the
frequencies that hash to the bucket and not just the frequency
whose occupancy has changed. Thus, to estimate the changing
frequencies we are going to use a different method which we
refer to as voting. We repeat the bucketization multiple times
while randomizing which frequencies hash to which buckets.
After that, each bucketization votes for frequencies that hash
to buckets where the power changed. Frequencies that get the
most number of votes are picked as the ones whose occupancy
has changed. To randomize the bucketizations, we simply use
co-prime sub-sampling which as described in §3.3.2 guarantees
that frequencies that hash together in one bucketization can
not hash together in the other bucketizations. Further details of
how and why this voting approach works can be found in the
technical report [37].

As with any differential system, we need to initialize the
state of spectrum occupancy. However, an interesting property
of D-BigBand is that we can initialize the occupancy of each
frequency in the spectrum to unknown. This is because, when
we take the difference in power we can tell whether the
frequency became occupied or it became empty. Specifically,
a negative power difference implies that the corresponding
frequency became empty, and a positive power difference
implies that the corresponding frequency became occupied.
Hence, once the occupancy of a frequency changes, we can tell
its current state irrespective of its previous state. This avoids
the need for initialization and prevents error propagation.

6 A USRP-BASED IMPLEMENTATION

A. Implementing BigBand: As a proof of concept, we
implement BigBand using USRP N210 software radios [39].
Since the USRPs use the same ADCs, it is not possible to have
co-prime sub-sampling rates. Thus, our implementation relies
on resolving collisions without co-prime sub-sampling.
We use three USRP N210 radios with the SBX daugh-

terboards, which can operate in the 400 MHz to 4.4 GHz
range. The clocks of the three USRPs are synchronized using
an external GPSDO clock [40]. In order to sample the same
signal using the three USRPs, we connect the USRPs to the
same antenna using a power splitter but with wires of different
lengths in order to introduce small time-shifts. We also remove
the analog low pass filters on the SBX daughterboards to allow
the USRP’s ADC to receive the entire bandwidth that its analog
front-end circuitry is designed for. The analog circuitry of the
USRP front-end can receive at most 0.9 GHz, which puts
an upper bound on the digital bandwidth of the system. The
three USRP ADCs each samples the signal at 50 MS/s.7 Thus,
our implementation of BigBand captures a bandwidth BW =
900 MHz using only 150 MS/s.

B. Implementing D-BigBand: D-BigBand’s frequency esti-
mation relies on using different co-prime sub-sampling rates
and hence we cannot implement D-BigBand directly on US-
RPs. Thus, to verify that D-BigBand can sense a non-sparse

7. In principle, the USRP ADC can sample up to 100 MS/s. However, the
USRP digital processing chain cannot support this rate and hence the ADC
sampling rate can be set to no higher than 50 MS/s.
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Fig. 6—Spectrum Occupancy: The figure shows the average spectrum
occupancy at our geographical location on Friday 01/15/2013 between
1-2pm:, as viewed at a 10 ms granularity (top) and 100µs granularity
(bottom). It shows that the spectrum is sparsely occupied. Further,
the sparsity increases when one computes the occupancy over shorter
time windows.

spectrum, we use trace-driven experiments. To collect traces of
one GHz of highly occupied spectrum, we use many USRPs
to transmit and receive. Since we have a total of 20 USRPs,
we divide them into 10 receivers and 10 transmitters and
capture 250 MHz at a time. We repeat this 4 times at center
frequencies that are 250 MHz apart and stitch them together in
the frequency domain to capture the full 1 GHz spectrum. We
then perform the inverse FFT to obtain a time signal sampled at
1 GHz. We now sub-sample this time domain signal using three
co-prime rates: 1/21, 1/20, and 1/23 GHz. We run D-BigBand
using these sub-sampled versions of the signal.

7 BIGBAND’S SPECTRUM SENSING RESULTS

7.1 Outdoor Spectrum Sensing

We collect outdoor measurements from the roof top of a
24 floor MIT building. We use BigBand to capture the signal
between 2 GHz and 2.9 GHz over 30 minutes. We configure
BigBand to compute the spectrum over an FFT window of
size W. We report here results for W = 10ms and W = 100µs.
We calculate the occupancy of a particular frequency as the
percentage of the FFT windows during which the frequency
was occupied (i.e., the power at that frequency was at least
twice the noise power).

Fig. 6 shows the fraction of time that each chunk of spectrum
between 2 GHz and 2.9 GHz is occupied, as recovered by
BigBand. These results were confirmed using a spectrum ana-
lyzer. The figure shows that the spectrum is sparsely occupied.
In particular, the occupancy is about 5% when considered
over FFT windows of 10 ms and drops to about 2%, when
viewed over windows of 100 µs. The figure shows that even
frequencies that look 100% occupied over 10 ms windows,
become less occupied when viewed over shorter intervals.
This is because while these frequencies are occupied for some
fraction of every 10 ms interval, there is a large number of



FFT Window BigBand 3 USRP Seq. Scan RFeye Scan
(900 MHz) (150 MHz) (20 MHz)

1 µs 1 µs 48 ms 22.5 ms
10 µs 10 µs 48 ms 22.5 ms
100 µs 100 µs 48 ms —
1 ms 1 ms 54 ms —
10 ms 10 ms 114 ms —

TABLE 1—Scanning time: BigBand is multiple orders of magnitude
faster than other technologies. This allows it to perform real-time
sensing to take advantage of even short term spectrum vacancies.

shorter windows within each 10 ms where these frequencies
are not occupied. For example, the WiFi band around 2.4 GHz
seems fully utilized when checked over 10 ms windows; yet
if one views it over windows that are 100 times shorter (i.e.,
100µs), one would discover that the medium is almost always
idle. In contrast, the band around 2.1 GHz which is used by
cellular technologies is occupied even at very short time scales.

The above implies that the spectrum is sparser at finer
time intervals, and provides more opportunities for fine-grained
spectrum reuse. This result motivates the need for fast spectrum
sensing schemes to exploit these short-term vacancies.

Finally, we note that measurements collected in other lo-
cations or on different dates show similar results to those
in Fig. 6 but may differ slightly in which frequencies are
occupied. Measurements from higher parts of the spectrum are
qualitatively similar but have significantly higher sparsity (we
omit the figures for lack of space).

7.2 BigBand vs. Spectrum Scanning

Most of today’s spectrum sensing equipment relies on
scanning. Even expensive, power hungry spectrum analyzers
typically capture a 100 MHz bandwidth in one shot, and end
up scanning to capture a larger spectrum [6]. The performance
of sequentially scanning the spectrum depends mainly on how
fast the device can scan a GHz of bandwidth. In the absence
of fast scanning, the system can miss radar and other highly
dynamic signals. Here, we compare how fast it would take to
scan the 900 MHz bandwidth using three techniques: state-of-
the-art spectrum monitors like the RFeye [5], which is used
in the Microsoft spectrum observatory, 3 USRPs sequentially
scanning the 900 MHz, or 3 USRPs using BigBand.

Table 1 shows the results for different FFT window sizes. In
all cases, BigBand takes exactly the time of the FFT window
to acquire the 900 MHz spectrum. The 3 USRPs combined
can scan 150 MHz at a time and hence need to scan 6 times
to acquire the full 900 MHz. For FFT window sizes lower
than 10 ms, the scanning time is about 48 ms. Hence, the
USRPs spend very little time actually sensing the spectrum,
which will lead to a lot of missed signals. Of course, state
of the art spectrum monitors can do much better. The RFeye
node has a fast scanning mode of 40 GHz/second [5]. It scans
in chunks of 20 MHz and thus will take 22.5 ms to scan 900
MHz. Note that RFeye has a maximum resolution of 20 kHz,
and hence does not support FFT windows larger than 50 µs.

Thus, BigBand, which uses off-the-shelf components, is
much faster than even expensive scanning based solutions,
allowing it to detect short-term spectrum vacancies.
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Fig. 7—False negatives and positives as a function of spectrum
sparsity: BigBand’s false positive and false negative rates are ex-
tremely low.
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Fig. 8—Unresolved frequencies as a function of spectrum sparsity:
BigBand cannot resolve around 2% of the frequencies with 5%
spectrum occupancy, and stays below 14% even when spectrum
occupancy grows as large as 10%.

7.3 BigBand’s Sparsity Range

The primary motivation of BigBand is to be able to sense
sparse spectrum. In this section, we verify the range of sparsity
for which BigBand works. We run our experiments between
3.05 GHz and 3.95 GHz because this band is effectively
empty (see Fig. 1), and hence enables us to perform controlled
experiments. We vary the sparsity in the 3.05 GHz to 3.95 GHz
range between 1% and 10% by transmitting from 5 different
USRPs. Each USRP transmits a signal whose bandwidth is at
least 1 MHz and at most 20 MHz. We randomize the bandwidth
and the center frequencies of the signals transmitted by the
USRPs. For each sparsity level, we repeat the experiment
100 times with different random choices of bandwidth and
center frequencies. We run BigBand over a 1 ms FFT window.
We consider three metrics:

• False Negatives: The fraction of occupied frequencies that
BigBand incorrectly reports as empty.

• False Positives: The fraction of empty frequencies that
BigBand incorrectly reports as occupied.

• Unresolved Frequencies: The fraction of total frequencies
that BigBand cannot resolve due to unresolved collisions.

Fig. 7 shows that BigBand’s false positives and false nega-
tives rates are extremely low. The probability of false positive
stays below 0.0005 even when 10% of the spectrum is occu-
pied. The probability of false negative is less than 0.002 when
the spectrum occupancy is less than 5%, and stays within 0.003
even when the spectrum occupancy goes up to 10%.

Fig. 8 shows that the fraction of unresolved frequencies is
less than 0.03 when the spectrum usage is below 5%. This
number increases as the spectrum usage increases, but stays
below 0.14 when 10% of the spectrum is used. Unresolved
frequencies increase as spectrum usage increases because the
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Fig. 9—BigBand’s Packet Loss as a function of the number of
simultaneous transmitters: BigBand can decode as many as 30
transmitters spread across a 900 MHz wide band, while keeping the
packet loss less than 3.5%.

probability of collision increases. Note however that in con-
trast to false positive and false negatives, BigBand knows
which exact frequencies it could not resolve and reports these
frequencies with the label “not-estimated”. Thus, unresolved
frequencies show lack of information as opposed to errors. The
application can decide how to treat unresolved frequencies. For
dynamic spectrum access, it can simply avoid the unresolved
frequencies.
We also note that real-world spectrum measurements, for

instance, in the Microsoft observatory, and in this paper,
reveal that actual spectrum usage is 2–5%. In this regime,
BigBand’s unresolved frequencies are less than 0.03. Further,
if the occupancy is high, one may use D-BigBand, which deals
with high occupancies (see results in §9.)

8 BIGBAND’S DECODING RESULTS

8.1 Decoding Multiple Transmitters

In this section, we verify that BigBand can concurrently
decode a large number of transmitters from diverse parts of
the spectrum. All the transmitters in our implementation use
the same technology, but the result naturally generalizes to
transmitters using different technologies.
We use 10 USRPs to emulate up to 30 transmitters hopping

in a spectrum of 0.9 GHz. At any given time instant, each
device uses 1 MHz of spectrum to transmit a BPSK signal.
Similar to the Bluetooth frequency hopping standard, we as-
sume that there is a master that assigns a hopping sequence
to each device that ensures that no two devices hop to the
same frequency at the same time instant. Note however, that
the hopping sequence for different devices allows them to hop
to frequencies that get aliased to the same bucket at a particular
time instant, and hence collide in BigBand’s aliasing filters.
Like in Bluetooth, each transmitter hops 1, 3, or 5 times per
packet, depending on the length of the packet.
Fig. 9 shows the packet loss rate versus the number of

devices hopping in the spectrum. It shows that BigBand can
decode the packets from 30 devices spanning a bandwidth of
900 MHz with a packet loss rate less than 3.5%. Decoding
all these transmitters without BigBand would either require a
wideband 0.9 GHz receiver, or a receiver with 30 RF-frontends,
both of which would be significantly more costly and power-
hungry.

8.2 Signal-to-Noise Ratio

It is expected that BigBand will have more noise than
a narrowband receiver since it can capture a much larger

ADC Quantization
BigBand vs Narrowband RX

mean max

8 bits -2.73 dB -2.78 dB
14 bits -5.68 dB -5.89 dB

TABLE 2—Reduction in SNR at different quantization levels
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Fig. 10—D-BigBand’s effectiveness as a function of Spectrum
Sparsity: Over a band of 1 GHz, D-BigBand can reliably detect
changes in spectrum occupancy even when the spectrum is 95%
occupied, as long as the change in spectrum occupancy is less than
1% every ms.

bandwidth. This section aims to shed insight on this issue. We
note three types of noise: thermal noise, quantization noise and
ADC jitter noise [19]. BigBand has higher thermal noise due
to bucketization. Specifically, since in our implementation, the
900 MHz bandwidth is aliased into 50 MHz, it is expected that
the thermal noise would increase by 18× (12.5 dB). However,
quantization noise and ADC jitter noise do not alias, and hence
do not increase. The overall increase in noise depends on how
the thermal noise compares to these other types of noise.

To understand the impact of thermal noise and quantify the
SNR performance of BigBand we compare it with a 50 MHz
narrowband receiver that uses the same USRP hardware. We
transmit a 10 MHz signal, receive it on BigBand and the nar-
rowband receiver, and compare the resulting SNR. We connect
BigBand and the narrowband receiver to the same antenna and
ensure that both receivers’ rx-gains are set properly so that
the received signal amplitude spans the same range on both
receivers. We run it for different receive signal strengths and
measure the SNR on each. We repeat the measurements for the
ADC quantization set to 8 bits and 14 bits to better understand
the interaction between thermal noise and quantization noise.

Table 2 shows the mean and max reduction in SNR of a
signal received on BigBand relative to the narrowband USRP.
The result shows that at 8 bit quantization, the reduction is a
little less than 3 dB which means that the 12 dB increase in
thermal noise only translates to 3 dB reduction in SNR due to
quantization and jitter noise. At a quantization of 14 bits, the
SNR reduction becomes 6 dB which means that the ADC jitter
noise is still significantly higher than thermal noise. Though
this reduction in SNR is significant compared to narrowband
receivers, one would require using 18 such receivers to capture
in realtime the same 900 MHz bandwidth as BigBand which
is not practical in terms of cost and bulkiness.

9 D-BIGBAND’S SENSING RESULTS

In this section, we evaluate D-BigBand’s ability to sense
changes in spectrum occupancy independent of sparsity. We
implement D-BigBand as described in §6. We vary the per-
centage of total occupied frequencies in the spectrum between



1% (sparse) to 95% (almost fully occupied). We then change
the number of frequencies that change occupancy every 1 ms
by up to 1% (i.e., 10 MHz), and evaluate D-BigBand’s accuracy
in identifying the frequencies that change occupancy.
As a function of spectrum occupancy, Fig. 10 shows the false

positives (i.e., frequencies whose occupancy has not changed,
but D-BigBand erroneously declared as changed) and false
negatives (i.e., frequencies whose occupancy has changed, but
D-BigBand erroneously declares as unchanged). We see that
D-BigBand robustly identifies changes in occupancy, with both
the false positive and the false negative probabilities remaining
under 0.02 even for a spectrum occupancy of 95%.

10 CONCLUSION

This paper presents BigBand, a system that enables GHz-
wide sensing and decoding using commodity radios. Empirical
evaluation demonstrates that BigBand is able to sense the
spectrum stably and dynamically under different sparsity levels;
we also demonstrate BigBand’s effectiveness as a receiver to
decode GHz-wide sparse signals. We believe that BigBand en-
ables multiple applications that would otherwise require ex-
pensive and power hungry devices, e.g. realtime spectrum
monitoring, dynamic spectrum access, concurrent decoding of
multiple transmitters in diverse parts of the spectrum.
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